TF-IDF計算 Python

來源:互聯網
上載者:User
def ComputeFreq(wordlist, text):    result = []    for word in wordlist:        countword = text.count(word)        texted = nltk.word_tokenize(text)        length = len(texted)        freq = countword/length        temp = {}        temp['word'] = word        temp['freq'] = freq        #print freq        result.append(temp)    return resultdef Computetfidf(wordfreq, corpus):    result = []    for item in wordfreq:        word = item['word']        tf = item['freq']        dlength = len(corpus)        count = 1        for line in corpus:            if line.find(word)!=-1:                count = count+1        idf = math.log10(dlength/count)        tfidf = tf*idf#         tempword.append(word)#         temptfidf.append(tfidf)          temp = {}        temp['word'] = word        temp['tfidf'] = tfidf        result.append(temp)    result.sort(lambda x,y : -cmp(x['tfidf'], y['tfidf']))      return result

第一個函數:計算word在text的詞頻

wordlist是list格式的word,text是對應的document,python中的string格式

第二個函數:計算word在語料庫中的TF-IDF

wordfreq是第一個函數的輸出結果,corpus是document的list儲存格式

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.