標籤:反序 pickle 常用函數 span file prot open 開啟 data
Pickle模組可以序列化對象並儲存到磁碟中,並在需要的時候讀取出來,任何對象都可以執行序列化操作。在機器學習中,我們常常需要把訓練好的模型儲存起來,這樣在進行決策時直接將模型獨處,而不需要重新訓練模型,這樣就大大節約了時間。
pickle模組常用函數
dump(obj,file,[,protocol]) |
將obj對象序列化存入已經開啟的file中 |
load(file) |
將file中的對象序列化讀出 |
dumps(obj,[,protocol]) |
將obj對象序列化為string形式,而不是存入檔案中 |
loads(string) |
從string中讀出序列化前的obj對象 |
樣本
#coding=utf-8import pickledatalist = [[1, 1, ‘yes‘], [1, 1, ‘yes‘], [1, 0, ‘no‘], [0, 1, ‘no‘], [0, 1, ‘no‘]] datadict = { 0: [1, 2, 3, 4], 1: (‘a‘, ‘b‘), 2: {‘c‘:‘yes‘,‘d‘:‘no‘}} with open("pickle_test.txt","wb") as writefp: pickle.dump(datalist, writefp) pickle.dump(datadict, writefp) with open("pickle_test.txt", "rb") as readfp: data1 = pickle.load(readfp) data2 = pickle.load(readfp) print (data1) print (data2)p = pickle.dumps(datalist) print( pickle.loads(p) ) p = pickle.dumps(datadict) print( pickle.loads(p) )
>>> [[1, 1, ‘yes‘], [1, 1, ‘yes‘], [1, 0, ‘no‘], [0, 1, ‘no‘], [0, 1, ‘no‘]]
>>> {0: [1, 2, 3, 4], 1: (‘a‘, ‘b‘), 2: {‘c‘: ‘yes‘, ‘d‘: ‘no‘}}
>>> [[1, 1, ‘yes‘], [1, 1, ‘yes‘], [1, 0, ‘no‘], [0, 1, ‘no‘], [0, 1, ‘no‘]]
>>> {0: [1, 2, 3, 4], 1: (‘a‘, ‘b‘), 2: {‘c‘: ‘yes‘, ‘d‘: ‘no‘}}
dump和load相比dumps和loads還有另外一種能力:dump()函數能一個接著一個的將幾個對象序列化儲存到同一個檔案中,隨後調用load()來以同樣的順序還原序列化讀出這些對象
Python之pickle