詳解Python中heapq模組的用法,pythonheapq

來源:互聯網
上載者:User

詳解Python中heapq模組的用法,pythonheapq

heapq 模組提供了堆演算法。heapq是一種子節點和父節點排序的樹形資料結構。這個模組提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。為了比較不存在的元素被人為是無限大的。heap最小的元素總是[0]。

列印 heapq 類型

import math import randomfrom cStringIO import StringIOdef show_tree(tree, total_width=36, fill=' '):   output = StringIO()   last_row = -1   for i, n in enumerate(tree):     if i:       row = int(math.floor(math.log(i+1, 2)))     else:       row = 0     if row != last_row:       output.write('\n')     columns = 2**row     col_width = int(math.floor((total_width * 1.0) / columns))     output.write(str(n).center(col_width, fill))     last_row = row   print output.getvalue()   print '-' * total_width   print    returndata = random.sample(range(1,8), 7)print 'data: ', datashow_tree(data)

列印結果

data: [3, 2, 6, 5, 4, 7, 1]     3             2      6      5    4  7     1   -------------------------heapq.heappush(heap, item)

push一個元素到heap裡, 修改上面的代碼

heap = []data = random.sample(range(1,8), 7)print 'data: ', datafor i in data:  print 'add %3d:' % i  heapq.heappush(heap, i)  show_tree(heap)

列印結果

data: [6, 1, 5, 4, 3, 7, 2]add  6:         6          ------------------------------------add  1:      1    6         ------------------------------------add  5:      1    6       5       ------------------------------------add  4:        1     4       5         6------------------------------------add  3:        1     3       5         6    4------------------------------------add  7:        1     3        5         6    4    7------------------------------------add  2:        1     3        2         6    4    7    5------------------------------------

根據結果可以瞭解,子節點的元素大於父節點元素。而兄弟節點則不會排序。

heapq.heapify(list)

將list類型轉化為heap, 線上性時間內, 重新排列列表。

print 'data: ', dataheapq.heapify(data)print 'data: ', datashow_tree(data)

列印結果

data: [2, 7, 4, 3, 6, 5, 1]data: [1, 3, 2, 7, 6, 5, 4]      1            3         2     7    6    5    4  ------------------------------------heapq.heappop(heap)

刪除並返回堆中最小的元素, 通過heapify() 和heappop()來排序。

data = random.sample(range(1, 8), 7)print 'data: ', dataheapq.heapify(data)show_tree(data)heap = []while data:  i = heapq.heappop(data)  print 'pop %3d:' % i  show_tree(data)  heap.append(i)print 'heap: ', heap

列印結果

data: [4, 1, 3, 7, 5, 6, 2]         1    4         2  7    5    6    3------------------------------------pop  1:         2    4         3  7    5    6------------------------------------pop  2:         3    4         6  7    5------------------------------------pop  3:         4    5         6  7------------------------------------pop  4:         5    7         6------------------------------------pop  5:         6    7------------------------------------pop  6:        7------------------------------------pop  7:------------------------------------heap: [1, 2, 3, 4, 5, 6, 7]

可以看到已排好序的heap。

heapq.heapreplace(iterable, n)

刪除現有元素並將其替換為一個新值。

data = random.sample(range(1, 8), 7)print 'data: ', dataheapq.heapify(data)show_tree(data)for n in [8, 9, 10]:  smallest = heapq.heapreplace(data, n)  print 'replace %2d with %2d:' % (smallest, n)  show_tree(data)

列印結果

data: [7, 5, 4, 2, 6, 3, 1]         1    2         3  5    6    7    4------------------------------------replace 1 with 8:         2    5         3  8    6    7    4------------------------------------replace 2 with 9:         3    5         4  8    6    7    9------------------------------------replace 3 with 10:         4    5         7  8    6    10    9------------------------------------

heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)

返回列表中的n個最大值和最小值

data = range(1,6)l = heapq.nlargest(3, data)print l     # [5, 4, 3]s = heapq.nsmallest(3, data)print s     # [1, 2, 3]

PS:一個計算題
構建元素個數為 K=5 的最小堆代碼執行個體:

#!/usr/bin/env python # -*- encoding: utf-8 -*- # Author: kentzhan #  import heapq import random  heap = [] heapq.heapify(heap) for i in range(15):  item = random.randint(10, 100)  print "comeing ", item,  if len(heap) >= 5:   top_item = heap[0] # smallest in heap   if top_item < item: # min heap    top_item = heapq.heappop(heap)    print "pop", top_item,    heapq.heappush(heap, item)    print "push", item,  else:   heapq.heappush(heap, item)   print "push", item,  pass  print heap pass print heap  print "sort" heap.sort()  print heap 

結果:

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.