UVA 563 Crimewave (最大流,拆點)

來源:互聯網
上載者:User

標籤:acm   網路流   圖論   algorithm   

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=504

  Crimewave 

Nieuw Knollendam is a very modern town. This becomes clear already when looking at the layout of its map, which is just a rectangular grid of streets and avenues. Being an important trade centre, Nieuw Knollendam also has a lot of banks. Almost on every crossing a bank is found (although there are never two banks at the same crossing). Unfortunately this has attracted a lot of criminals. Bank hold-ups are quite common, and often on one day several banks are robbed. This has grown into a problem, not only to the banks, but to the criminals as well. After robbing a bank the robber tries to leave the town as soon as possible, most of the times chased at high speed by the police. Sometimes two running criminals pass the same crossing, causing several risks: collisions, crowds of police at one place and a larger risk to be caught.


To prevent these unpleasant situations the robbers agreed to consult together. Every Saturday night they meet and make a schedule for the week to come: who is going to rob which bank on which day? For every day they try to plan the get-away routes, such that no two routes use the same crossing. Sometimes they do not succeed in planning the routes according to this condition, although they believe that such a planning should exist.


Given a grid of  and the crossings where the banks to be robbed are located, find out whether or not it is possible to plan a get-away route from every robbed bank to the city-bounds, without using a crossing more than once.

Input The first line of the input contains the number of problems p to be solved.

  • The first line of every problem contains the number s of streets ( ), followed by the number a of avenues ( ), followed by the number b () of banks to be robbed.

  • Then b lines follow, each containing the location of a bank in the form of two numbers x (the number of the street) and y (the number of the avenue). Evidently  and .

Output The output file consists of p lines. Each line contains the text possible or not possible. If it is possible to plan non-crossing get-away routes, this line should contain the word: possible. If this is not possible, the line should contain the words not possible.

Sample Input 

26 6 104 13 24 25 23 44 45 43 64 65 65 5 53 22 33 34 33 4

Sample Output 

possiblenot possible


Miguel A. Revilla 
1998-03-10

題意:

有若干罪犯搶銀行,要求逃出地圖時他們的路線不相交,求是否能達到上述要求。

分析:

路線不相交即每個點每條邊只能用一次,即容量為1,點上的流量限制拆點即可。源點連向罪犯所在位置的入點,最外一圈的出點連向匯點,滿流即可能。


/* * *Author:fcbruce * *Date:2014-09-04 21:26:22  * */#include <cstdio>#include <iostream>#include <sstream>#include <cstdlib>#include <algorithm>#include <ctime>#include <cctype>#include <cmath>#include <string>#include <cstring>#include <stack>#include <queue>#include <list>#include <vector>#include <map>#include <set>#define sqr(x) ((x)*(x))#define LL long long#define itn int#define INF 0x3f3f3f3f#define PI 3.1415926535897932384626#define eps 1e-10#ifdef _WIN32#define lld "%I64d"#else#define lld "%lld"#endif#define maxm 2333333#define maxn 8964using namespace std;int fir[maxn];int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];int e_max;int iter[maxn],q[maxn],lv[maxn];void add_edge(int _u,int _v,int _w){    int e;    e=e_max++;    u[e]=_u;v[e]=_v;cap[e]=_w;    nex[e]=fir[u[e]];fir[u[e]]=e;    e=e_max++;    u[e]=_v;v[e]=_u;cap[e]=0;    nex[e]=fir[u[e]];fir[u[e]]=e;}void dinic_bfs(int s){    int f,r;    memset(lv,-1,sizeof lv);    q[f=r=0]=s;    lv[s]=0;    while(f<=r)    {        int x=q[f++];        for (int e=fir[x];~e;e=nex[e])        {            if (cap[e]>flow[e] && lv[v[e]]<0)            {                lv[v[e]]=lv[u[e]]+1;                q[++r]=v[e];            }        }    }}int dinic_dfs(int _u,int t,int _f){    if (_u==t)  return _f;    for (int &e=iter[_u];~e;e=nex[e])    {        if (cap[e]>flow[e] && lv[_u]<lv[v[e]])        {            int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));            if (_d>0)            {                flow[e]+=_d;                flow[e^1]-=_d;                return _d;            }        }    }    return 0;}int max_flow(int s,int t){    memset(flow,0,sizeof flow);    int total_flow=0;    for (;;)    {        dinic_bfs(s);        if (lv[t]<0)    break;        memcpy(iter,fir,sizeof iter);        int _f;        while ((_f=dinic_dfs(s,t,INF))>0)            total_flow+=_f;    }    return total_flow;}int main(){#ifdef FCBRUCEfreopen("/home/fcbruce/code/t","r",stdin);#endif // FCBRUCEint T_T;scanf( "%d",&T_T);while (T_T--){int n,m,s=0,t=8963;scanf( "%d%d",&n,&m);e_max=0;memset(fir,-1,sizeof fir);for (int i=1;i<=n;i++)for (int j=1;j<=m;j++){add_edge(i*m+j+n*m,i*m+j,1);if (i==n || j==m) continue;add_edge(i*m+j,(i+1)*m+j+n*m,1);add_edge(i*m+j,i*m+j+1+n*m,1);add_edge((i+1)*m+j,i*m+j+n*m,1);add_edge(i*m+j+1,i*m+j+n*m,1);}for (int i=1;i<=m;i++){add_edge(1*m+i,t,1);add_edge(n*m+i,t,1);}for (int i=2;i<n;i++){add_edge(i*m+1,t,1);add_edge(i*m+m,t,1);}int p;scanf( "%d",&p);for (int i=0,x,y;i<p;i++){scanf( "%d%d",&x,&y);add_edge(s,x*m+y+n*m,1);}if (max_flow(s,t)==p)puts( "possible");elseputs( "not possible");}return 0;}


UVA 563 Crimewave (最大流,拆點)

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.