標籤:exe yield 自己 turned bsp tin 相關 ucontext on()
轉自:http://blog.csdn.net/cyberlabs/article/details/6920138
使用makecontext實現使用者線程
現代Unix系統都在ucontext.h中提供用於環境切換的函數,這些函數有getcontext, setcontext,swapcontext 和makecontext。其中,getcontext用於儲存當前上下文,setcontext用於切換上下文,swapcontext會儲存當前上下文並切換到另一個上下文,makecontext建立一個新的上下文。實現使用者線程的過程是:我們首先調用getcontext獲得當前上下文,然後修改ucontext_t指定新的上下文。同樣的,我們需要開闢棧空間,但是這次實現的線程庫要涉及棧生長的方向。然後我們調用makecontext切換上下文,並指定使用者線程中要執行的函數。
在這種實現中還有一個挑戰,即一個線程必須可以主動讓出CPU給其它線程。swapcontext函數可以完成這個任務,圖4展示了一個這種實現的範例程式,child線程和parent線程不斷切換以達到多線程的效果。在libfiber-uc.c檔案中可以看到完整的實現。
#include
#include
#include
// 64kB stack
#define FIBER_STACK 1024*64
ucontext_t child, parent;
// The child thread will execute this function
void threadFunction()
{
printf( "Child fiber yielding to parent" );
swapcontext( &child, &parent );
printf( "Child thread exiting\n" );
swapcontext( &child, &parent );
}
int main()
{
// Get the current execution context
getcontext( &child );
// Modify the context to a new stack
child.uc_link = 0;
child.uc_stack.ss_sp = malloc( FIBER_STACK );
child.uc_stack.ss_size = FIBER_STACK;
child.uc_stack.ss_flags = 0;
if ( child.uc_stack.ss_sp == 0 )
{
perror( "malloc: Could not allocate stack" );
exit( 1 );
}
// Create the new context
printf( "Creating child fiber\n" );
makecontext( &child, &threadFunction, 0 );
// Execute the child context
printf( "Switching to child fiber\n" );
swapcontext( &parent, &child );
printf( "Switching to child fiber again\n" );
swapcontext( &parent, &child );
// Free the stack
free( child.uc_stack.ss_sp );
printf( "Child fiber returned and stack freed\n" );
return 0;
}
圖4用makecontext實現線程
使用者級線程的搶佔
搶佔實現的一個最重要的因素就是定時觸發的計時器中斷,它的存在使得我們能夠中斷當前程式的執行,非同步對進程的時間片消耗情況進行統計,並在必要的時候(可能是時間片耗盡,也可能是一個高優先順序的程式就緒)從當前進程調度到其它進程去執行。
對於使用者空間程式來說,與核心空間的中斷相對應的就是訊號,它和中斷一樣都是非同步觸發,並能引起執行流的跳轉。所以要想實現使用者級線程的搶佔,我們可以藉助定時器訊號(SIGALRM),必要時在訊號處理常式內部進行內容相關的切換。
為了驗證自己的想法,我在上篇文章提到的協同多線程的基礎上加上了相關搶佔代碼,具體實現如下:
#include <stdlib.h>
#include <stdio.h>
#include <ucontext.h>
#include <sys/time.h>
#define STACK_SIZE 4096
#define UTHREAD_MAX_NUM 256
#define INIT_TICKS 10
typedef int uthread_t;
typedef void uthread_attr_t;
uthread_t current = 0;
#define uthread_self() current
struct uthread_struct
{
int used;
ucontext_t context;
char stack[STACK_SIZE];
void* (*func)(void *arg);
void *arg;
void *exit_status;
int ticks;
};
static struct uthread_struct uthread_slots[UTHREAD_MAX_NUM];
void panic(void)
{
fprintf(stderr, "Panic, bala bala...\n");
exit(EXIT_FAILURE);
}
void idle_thread(void)
{
int i;
for (i = 1; i < UTHREAD_MAX_NUM; i ++)
if (uthread_slots[i].used)
break;
if (i == UTHREAD_MAX_NUM)
panic();
if (current != 0)
uthread_slots[current].used = 0;
current = i;
swapcontext(&uthread_slots[0].context,&uthread_slots[current].context);
}
void uthread_context_init(int tid)
{
getcontext(&uthread_slots[tid].context);
uthread_slots[tid].context.uc_stack.ss_sp = uthread_slots[tid].stack;
uthread_slots[tid].context.uc_stack.ss_size =sizeof(uthread_slots[tid].stack);
uthread_slots[tid].context.uc_link = &uthread_slots[0].context;
}
void uthread_init(void)
{
uthread_context_init(0);
uthread_slots[0].used = 1;
makecontext(&uthread_slots[0].context, idle_thread, 0);
}
void uthread_schedule(void);
void uthread_exit(void *exit_status)
{
uthread_slots[current].exit_status = exit_status;
uthread_slots[current].used = 0;
uthread_schedule();
}
void uthread_helper(void)
{
uthread_exit(uthread_slots[current].func(uthread_slots[current].arg));
}
int uthread_create(uthread_t *thread, const uthread_attr_t *attr,
void* (*start_routine)(void*), void *arg)
{
static int last_used = 0;
int i;
for (i = (last_used + 1) % UTHREAD_MAX_NUM; i != last_used;
i = (i + 1) % UTHREAD_MAX_NUM)
if (!uthread_slots[i].used)
break;
if (i == last_used)
return -1;
last_used = i;
if (thread != NULL)
*thread = i;
uthread_context_init(i);
uthread_slots[i].used = 1;
uthread_slots[i].func = start_routine;
uthread_slots[i].arg = arg;
uthread_slots[i].exit_status = 0;
uthread_slots[i].ticks = uthread_slots[current].ticks / 2;
uthread_slots[current].ticks -= uthread_slots[i].ticks;
makecontext(&uthread_slots[i].context, uthread_helper, 0);
return 0;
}
void uthread_schedule(void)
{
int i, prev;
for (i = (current + 1) % UTHREAD_MAX_NUM; i != current;
i = (i + 1) % UTHREAD_MAX_NUM)
if (uthread_slots[i].used)
break;
if (i == current)
panic();
prev = current;
current = i;
swapcontext(&uthread_slots[prev].context,&uthread_slots[current].context);
}
void* thread(void *arg)
{
int i;
for (i = 0; 1; i ++) {
if (i % 1000 == 0)
printf("thread/%d(%s): i = %d\n", current, (char*)arg,i);
uthread_create(NULL, NULL, thread, arg);
if (i % 1000000 == 0)
uthread_schedule();
}
}
void sig_ticks_timer(int signo)
{
if (--uthread_slots[current].ticks <= 0) {
uthread_slots[current].ticks = INIT_TICKS;
uthread_schedule();
}
}
int main(int argc, char *argv[])
{
uthread_t tid;
struct itimerval ticks_timer;
uthread_init();
uthread_create(&tid, NULL, thread, "hw1");
printf("tid is %d\n", tid);
uthread_create(&tid, NULL, thread, "hw2");
printf("tid is %d\n", tid);
signal(SIGALRM, sig_ticks_timer);
ticks_timer.it_interval.tv_sec = 0;
ticks_timer.it_interval.tv_usec = 10000;
ticks_timer.it_value.tv_sec = 0;
ticks_timer.it_value.tv_usec = 10000;
setitimer(ITIMER_REAL, &ticks_timer, NULL);
while (1)
idle_thread();
return 0;
}
似乎該有的都有了,也許真的可以在使用者空間實現一個虛擬作業系統環境玩呢...
使用makecontext實現使用者線程【轉】