標籤:style blog http io ar color os 使用 sp
源碼:CoreNLP官網。
目前release的CoreNLP version 3.5.0版本僅支援java-1.8及以上版本,因此有時需要為Eclipse添加jdk-1.8配置,配置方法如下:
- 首先,去oracle官網下載java-1.8,下載網址為:java下載,安裝完成後。
- 開啟Eclipse,選擇Window -> Preferences -> Java –> Installed JREs 進行配置:
點擊表單右邊的“add”,然後添加一個“Standard VM”(應該是標準虛擬機器的意思),然後點擊“next”;
在”JRE HOME”那一行點擊右邊的“Directory…”找到你java 的安裝路徑,比如“C:Program Files/Java/jdk1.8”
這樣你的Eclipse就已經支援jdk-1.8了。
1. 建立java工程,注意編譯環境版本選擇1.8
2. 將官網下載的源碼解壓到工程下,並匯入所需jar包
如匯入stanford-corenlp-3.5.0.jar、stanford-corenlp-3.5.0-javadoc.jar、stanford-corenlp-3.5.0-models.jar、stanford-corenlp-3.5.0-sources.jar、xom.jar等
匯入jar包過程為:項目右擊->Properties->Java Build Path->Libraries,點擊“Add JARs”,在路徑中選取相應的jar包即可。
3. 建立TestCoreNLP類,代碼如下
1 package Test; 2 3 import java.util.List; 4 import java.util.Map; 5 import java.util.Properties; 6 7 import edu.stanford.nlp.dcoref.CorefChain; 8 import edu.stanford.nlp.dcoref.CorefCoreAnnotations.CorefChainAnnotation; 9 import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;10 import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;11 import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;12 import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;13 import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;14 import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;15 import edu.stanford.nlp.ling.CoreLabel;16 import edu.stanford.nlp.pipeline.Annotation;17 import edu.stanford.nlp.pipeline.StanfordCoreNLP;18 import edu.stanford.nlp.semgraph.SemanticGraph;19 import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation;20 import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;21 import edu.stanford.nlp.trees.Tree;22 import edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation;23 import edu.stanford.nlp.util.CoreMap;24 25 public class TestCoreNLP {26 public static void main(String[] args) {27 // creates a StanfordCoreNLP object, with POS tagging, lemmatization, NER, parsing, and coreference resolution28 Properties props = new Properties();29 props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");30 StanfordCoreNLP pipeline = new StanfordCoreNLP(props);31 32 // read some text in the text variable33 String text = "Add your text here:Beijing sings Lenovo";34 35 // create an empty Annotation just with the given text36 Annotation document = new Annotation(text);37 38 // run all Annotators on this text39 pipeline.annotate(document);40 41 // these are all the sentences in this document42 // a CoreMap is essentially a Map that uses class objects as keys and has values with custom types43 List<CoreMap> sentences = document.get(SentencesAnnotation.class);44 45 System.out.println("word\tpos\tlemma\tner");46 for(CoreMap sentence: sentences) {47 // traversing the words in the current sentence48 // a CoreLabel is a CoreMap with additional token-specific methods49 for (CoreLabel token: sentence.get(TokensAnnotation.class)) {50 // this is the text of the token51 String word = token.get(TextAnnotation.class);52 // this is the POS tag of the token53 String pos = token.get(PartOfSpeechAnnotation.class);54 // this is the NER label of the token55 String ne = token.get(NamedEntityTagAnnotation.class);56 String lemma = token.get(LemmaAnnotation.class);57 58 System.out.println(word+"\t"+pos+"\t"+lemma+"\t"+ne);59 }60 // this is the parse tree of the current sentence61 Tree tree = sentence.get(TreeAnnotation.class);62 63 // this is the Stanford dependency graph of the current sentence64 SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);65 }66 // This is the coreference link graph67 // Each chain stores a set of mentions that link to each other,68 // along with a method for getting the most representative mention69 // Both sentence and token offsets start at 1!70 Map<Integer, CorefChain> graph = document.get(CorefChainAnnotation.class);71 }72 }
PS:該代碼的思想是將text字串交給Stanford CoreNLP處理,StanfordCoreNLP的各個組件(annotator)按“tokenize(分詞), ssplit(斷句), pos(詞性標註), lemma(詞元化), ner(具名實體識別), parse(文法分析), dcoref(同義字分辨)”順序進行處理。
處理完後List<CoreMap> sentences = document.get(SentencesAnnotation.class);中包含了所有分析結果,遍曆即可獲知結果。
這裡簡單的將單詞、詞性、詞元、是否實體列印出來。其餘的用法參見官網(如sentiment、parse、relation等)。
4. 執行結果:
Eclipse下使用Stanford CoreNLP的方法