windows 8.0上eclipse 4.4.0 配置centos 6.5 上的hadoop2.2.0開發環境

來源:互聯網
上載者:User

標籤:des   style   blog   http   io   color   ar   os   java   

  1. eclipse的hadoop外掛程式:https://github.com/winghc/hadoop2x-eclipse-plugin
  2. 將下載的壓縮包解壓,將hadoop-eclipse-kepler-plugin-2.2.0這個jar包扔到eclipse下面的dropins目錄下,重啟eclipse即可
  3. 進入windows->Preference配置根目錄,這裡面的hadoop installation directory並不是你windows上裝的hadoop目錄,而僅僅是你在centos上編譯好的源碼,在windows上的解壓路徑而已,該路徑僅僅是用於在建立MapReduce Project能從這個地方自動引入MapReduce所需要的jar
  4. 進入Window-->Open Perspective-->other-->Map/Reduce開啟Map/Reduce視窗
  5. 找到,右擊選擇,New Hadoop location,這個時候會出現Map/Reduce(V2)中的配置對應於mapred-site.xml中的連接埠配置,DFS Master中的配置對應於core-site.xml中的連接埠配置,配置完成之後finish即可,這個時候可以查看
  6. 測試,建立一個MapReduce項目,,要解決這個問題,你必須要完成如下幾個步驟,在windows上配置HADOOP_HOME,然後將%HADOOP_HOME%\bin加入到path之中,然後去https://github.com/srccodes/hadoop-common-2.2.0-bin下載一個,下載之後將這個bin目錄裡面的東西全部拷貝到你自己windows上的HADOOP的bin目錄下,覆蓋即可,同時把hadoop.dll加到C盤下的system32中,如果這些都完成之後還是碰到:Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z,那麼就檢查一下你的JDK,有可能是32位的JDK導致的,需要下載64位JDK安裝,並且在eclipse將jre環境配置為你新安裝的64位JRE環境。如我的jre1.8是64位,jre7是32位,如果這裡面沒有,你直接add即可,選中你的64位jre環境之後,就會出現了。
  7. 之後寫個wordcount程式測試一下,貼出My Code如下,前提是你已經在hdfs上建好了input檔案,並且在裡面放些內容
    import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {  private final static IntWritable one = new IntWritable(1);  private Text word = new Text();  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {   StringTokenizer itr = new StringTokenizer(value.toString());   while (itr.hasMoreTokens()) {    word.set(itr.nextToken());    context.write(word, one);   }  } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {  private IntWritable result = new IntWritable();  public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {   int sum = 0;   for (IntWritable val : values) {    sum += val.get();   }   result.set(sum);   context.write(key, result);  } } public static void main(String[] args) throws Exception {//System.setProperty("hadoop.home.dir", "E:\\hadoop2.2\\");  Configuration conf = new Configuration();  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();  // if (otherArgs.length != 2) {  // System.err.println("Usage: wordcount <in> <out>");  // System.exit(2);  // }  Job job = new Job(conf, "word count");  job.setJarByClass(WordCount.class);  job.setMapperClass(TokenizerMapper.class);  job.setCombinerClass(IntSumReducer.class);  job.setReducerClass(IntSumReducer.class);  job.setOutputKeyClass(Text.class);  job.setOutputValueClass(IntWritable.class);  FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/input"));  FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/output"));  boolean flag = job.waitForCompletion(true);  System.out.print("SUCCEED!" + flag);  System.exit(flag ? 0 : 1);  System.out.println(); }}


    至此,程式終於運行成功,重新整理一下你的DFS即可,看到輸出結果

windows 8.0上eclipse 4.4.0 配置centos 6.5 上的hadoop2.2.0開發環境

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.