windows編譯hadoop 2.x Hadoop-eclipse-plugin外掛程式

來源:互聯網
上載者:User

標籤:eclipse外掛程式   hadoop   

一.簡介

  Hadoop2.x之後沒有Eclipse外掛程式工具,我們就不能在Eclipse上調試代碼,我們要把寫好的java代碼的MapReduce打包成jar然後在Linux上運行,所以這種不方便我們調試代碼,所以我們自己編譯一個Eclipse外掛程式,方便我們在我們本地上調試,經過hadoop1.x的發展,編譯hadoop2.x版本的eclipse外掛程式比之前簡單多了。接下來我 們開始編譯Hadoop-eclipse-plugin外掛程式,並在Eclipse開發Hadoop。

二.軟體安裝並配置

 

 1.JDK配置

    1) 安裝jdk

    2) 配置環境變數

      JAVA_HOME、CLASSPATH、PATH等設定,這裡就不多介紹,網上很多資料

 2.Eclipse

   1).下載eclipse-jee-juno-SR2.rar

   2).解壓到本地磁碟,:

     

3.Ant

  1)下載

   http://ant.apache.org/bindownload.cgi

   apache-ant-1.9.4-bin.zip

 2)解壓到一個盤,:

   

 3).環境變數的配置

    建立ANT_HOME=E:\ant\apache-ant-1.9.4-bin\apache-ant-1.9.4

    在PATH後面加;%ANT_HOME%\bin

 4)cmd 測試一下是否配置正確

    ant version   :

 

4.Hadoop

 1).下載hadoop包

    hadoop-2.6.0.tar.gz

   解壓到本地磁碟,:

 

下載hadoop2x-eclipse-plugin原始碼

 1)目前hadoop2的eclipse-plugins原始碼由github脫管,是https://github.com/winghc/hadoop2x-eclipse-plugin,然後在右側的Download ZIP連接點擊下載,:

    


2)下載hadoop2x-eclipse-plugin-master.zip

   解壓到本地磁碟,:

    

三.編譯hadoop-eclipse-plugin外掛程式

   

 1.hadoop2x-eclipse-plugin-master解壓在E:盤開啟命令列cmd,切換到E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin 目錄,:

     

2.執行ant jar

 antjar -Dversion=2.6.0 -Declipse.home=F:\tool\eclipse-jee-juno-SR2\eclipse-jee-juno-SR2 -Dhadoop.home=E:\hadoop\hadoop-2.6.0\hadoop-2.6.0,:



 3.編譯成功產生的hadoop-eclipse-plugin-2.6.0.jar在E:\hadoop\hadoop2x-eclipse-plugin-master\build\contrib\eclipse-plugin路徑下,:   

四.Eclipse配置hadoop-eclipse-plugin 外掛程式    1.把hadoop-eclipse-plugin-2.6.0.jar拷貝到F:\tool\eclipse-jee-juno-SR2\eclipse-jee-juno-SR2\plugins目錄下,重啟一下Eclipse,然後可以看到DFS Locations,:

 2.開啟Window-->Preferens,可以看到Hadoop Map/Reduc選項,然後點擊,然後添加hadoop-2.6.0進來,:

3.配置Map/ReduceLocations

   1)點擊Window-->Show View -->MapReduce Tools  點擊Map/ReduceLocation

   2)點擊Map/ReduceLocation選項卡,點擊右邊小象表徵圖,開啟Hadoop Location配置視窗: 輸入Location Name,任意名稱即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成hdfs-site.xml與core-site.xml的設定一致即可。


4.查看是否串連成功

五.運行建立WordCount 項目並運行

   1.右擊New->Map/Reduce Project

   2.建立WordCount.java

import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WordCount {  public static class TokenizerMapper       extends Mapper<Object, Text, Text, IntWritable>{    private final static IntWritable one = new IntWritable(1);    private Text word = new Text();    public void map(Object key, Text value, Context context                    ) throws IOException, InterruptedException {      StringTokenizer itr = new StringTokenizer(value.toString());      while (itr.hasMoreTokens()) {        word.set(itr.nextToken());        context.write(word, one);      }    }  }  public static class IntSumReducer       extends Reducer<Text,IntWritable,Text,IntWritable> {    private IntWritable result = new IntWritable();    public void reduce(Text key, Iterable<IntWritable> values,                       Context context                       ) throws IOException, InterruptedException {      int sum = 0;      for (IntWritable val : values) {        sum += val.get();      }      result.set(sum);      context.write(key, result);    }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    Job job = Job.getInstance(conf, "word count");    job.setJarByClass(WordCount.class);    job.setMapperClass(TokenizerMapper.class);    job.setCombinerClass(IntSumReducer.class);    job.setReducerClass(IntSumReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(IntWritable.class);    FileInputFormat.addInputPath(job, new Path(args[0]));    FileOutputFormat.setOutputPath(job, new Path(args[1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}
3.在hdfs輸入目錄建立需要統計的文本

    1)沒有輸入輸出目錄卡,先在hdfs上建個檔案夾  

        #bin/hdfs dfs -mkdir –p  /user/root/input

        #bin/hdfs dfs -mkdir -p  /user/root/output

    2).把要統計的文本上傳到hdfs的輸入目錄下

       # bin/hdfs dfs -put/usr/local/hadoop/hadoop-2.6.0/test/* /user/root/input      //把tes/file01檔案上傳到hdfs的/user/root/input中

    3).查看

       #bin/hdfs dfs -cat /user/root/input/file01

   


 4.點擊WordCount.java右擊-->Run As-->Run COnfigurations   設定輸入和輸出目錄路徑,:

  

  5.點擊WordCount.java右擊-->Run As-->Run on  Hadoop

  

      

  

 然後到output/count目錄下,有一個統計檔案,並查看結果,所以配置成功。

五.注意的地方

    我們在這篇介了,Eclipse串連Linux虛擬機器上Hadoop並在Eclipse開發Hadoop的一些問題,解決Exception: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z 等一系列問題






windows編譯hadoop 2.x Hadoop-eclipse-plugin外掛程式

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.