convolutional neural network source code

Discover convolutional neural network source code, include the articles, news, trends, analysis and practical advice about convolutional neural network source code on alibabacloud.com

C + + convolutional Neural Network example: TINY_CNN code detailed (11)--Layer structure container layers class source analysis

are two functions head () and tail (), the implementation mechanism is very simple, I believe you can understand:As for how to access the specified layer, TINY_CNN provides two means, one is to define the at function and type conversion through dynamic_cast:Another method is to overload the "[]" operation, and to access the array as a classThe above two methods of access are indexed (index) to complete, more convenient.OK, about the layer structure container layers class

"Original" Van Gogh oil painting with deep convolutional neural network What is the effect of 100,000 iterations? A neural style of convolutional neural networks

As a free from the vulgar Code of the farm, the Spring Festival holiday Idle, decided to do some interesting things to kill time, happened to see this paper: A neural style of convolutional neural networks, translated convolutional neura

convolutional Neural Network (convolutional neural network,cnn)

The biggest problem with full-attached neural networks (Fully connected neural network) is that there are too many parameters for the full-connection layer. In addition to slowing down the calculation, it is easy to cause overfitting problems. Therefore, a more reasonable neural ne

(reproduced) convolutional Neural Networks convolutional neural network

convolutional Neural Networks convolutional neural network contents One: Leading back propagation reverse propagation algorithm Network structure Learning Algorithms Two:

convolutional Neural Network (convolutional neural network,cnn)

The biggest problem with full-attached neural networks (Fully connected neural network) is that there are too many parameters for the full-connection layer. In addition to slowing down the calculation, it is easy to cause overfitting problems. Therefore, a more reasonable neural ne

UFLDL Learning notes and programming Jobs: convolutional neural Network (convolutional neural Networks)

UFLDL Learning notes and programming Jobs: convolutional neural Network (convolutional neural Networks)UFLDL out a new tutorial, feel better than before, from the basics, the system is clear, but also programming practice.In deep learning high-quality group inside listen to

C ++ convolutional neural network example: tiny_cnn code explanation (10) -- layer_base and layer Class Structure Analysis

C ++ convolutional neural network example: tiny_cnn code explanation (10) -- layer_base and layer Class Structure Analysis In the previous blog posts, we have analyzed most of the layer structure classes. In this blog post, we plan to address the last two layers, it is also the two basic classes layer_base and layer th

convolutional Neural Networks convolutional neural Network (II.)

Transfer from http://blog.csdn.net/zouxy09/article/details/8781543CNNs is the first learning algorithm to truly successfully train a multi-layered network structure. It uses spatial relationships to reduce the number of parameters that need to be learned to improve the training performance of the general Feedforward BP algorithm. In CNN, a small part of the image (local sensing area) as the lowest layer of the input of the hierarchy, the information i

The parallelization model of convolutional neural network--one weird trick for parallelizing convolutional neural Networks

I've been focusing on CNN implementations for a while, looking at Caffe's code and Convnet2 's code. At present, the content of the single-machine multi-card is more interested, so pay special attention to Convnet2 about MULTI-GPU support.where Cuda-convnet2 's project address is published in: Google Code:cuda-convnet2A more important paper on MULTI-GPU is: one weird trick for parallelizing

C ++ convolutional neural network example: tiny_cnn code explanation (9) -- partial_connected_layer Structure Analysis (bottom)

C ++ convolutional neural network example: tiny_cnn code explanation (9) -- partial_connected_layer Structure Analysis (bottom) In the previous blog, we focused on analyzing the structure of the member variables of the partial_connected_layer class. In this blog, we will continue to give a brief introduction to other m

Using CNN (convolutional neural nets) to detect facial key points Tutorial (iii): convolutional neural Network training and data augmentation

with a (c,0,1) Form, where C represents the channel (color), and 0 and 1 correspond to the x and y dimensions of the image. In our question, the specific three-dimensional matrix is (1,96,96), because we only use grayscale as a color channel.A function load2d the above load function to complete the 2-dimensional to three-dimensional transformation: def load2d(test=False, cols=None): X, y = load(test=test) X = X.reshape(-119696) return X, yWe are going to create a

convolutional neural Network (ii): convolutional neural network BP algorithm for CNN

,In the above formula, the * number is the convolution operation, the kernel function k is rotated 180 degrees and then the error term is related to the operation, and then summed.Finally, we study how to calculate the partial derivative of the kernel function connected with the convolution layer after obtaining the error terms of each layer, and the formula is as follows.The partial derivative of the kernel function can be obtained when the error item of the convolution layer is rotated 180 deg

convolutional Neural Networks (convolutional neural Network)

convolutional neural network for CNN. The C-layer represents all the layers that are obtained after filtering the input image, also called "convolution layer". The S layer represents the layer that the input image is sampled (subsampling) to get. Where C1 and C3 are convolution layers, S2 and S4 are the next sampling layers. Each layer in the C, S layer consists

Deep learning Note (i) convolutional neural network (convolutional neural Networks)

I. Convolutionconvolutional Neural Networks (convolutional neural Networks) are neural networks that share parameters spatially. Multiply by using a number of layers of convolution, rather than a matrix of layers. In the process of image processing, each picture can be regarded as a "pancake", which includes the height

convolutional Neural Network (convolutional neural Networks)

convolutional neural Network (CNN) is the foundation of deep learning. The traditional fully-connected neural network (fully connected networks) takes numerical values as input.If you want to work with image-related information, you should also extract the features from the

Tensorflow32 "TensorFlow Combat" note -05 TensorFlow realize convolutional neural Network code

01 Simple Convolution network # "TensorFlow Combat" TensorFlow realize convolution neural network # WIN10 Tensorflow1.0.1 python3.5.3 # CUDA v8.0 cudnn-8.0-windows10-x64-v5.1 # Filen ame:sz05.01.py # Simple convolution network from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist =

Learning notes TF057: TensorFlow MNIST, convolutional neural network, recurrent neural network, unsupervised learning, tf057tensorflow

Learning notes TF057: TensorFlow MNIST, convolutional neural network, recurrent neural network, unsupervised learning, tf057tensorflow MNIST convolutional neural

005-convolutional Neural Network 01-convolutional layer

Network Steps to do: (a Chinese, teach Chinese, why write a bunch of English?) )1, sample Abatch of data (sampling)2,it through the graph, get loss (forward propagation, get loss value)3,backprop to calculate the geadiets (reverse propagation calculation gradient)4,update the paramenters using the gradient (using gradient update parameters)What convolutional neural

Application of CNN convolutional Neural network in natural language processing

the maximum value of each feature dictionary is pooled, that is, only the maximum value of each feature dictionary is recorded. In this way, a string of univariate eigenvectors (univariate feature vectors) is generated from six dictionaries, and these six feature mosaics form a eigenvector that is passed to the second-to-last level of the network. The final Softmax layer takes this eigenvector as input and uses it to classify the sentences; we assume

Spark MLlib Deep Learning convolution neural network (depth learning-convolutional neural network) 3.3

3. Spark MLlib Deep Learning convolution neural network (depth learning-convolutional neural network) 3.3Http://blog.csdn.net/sunbow0Chapter III Convolution neural Network (

Total Pages: 10 1 2 3 4 5 .... 10 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.