coursera machine learning ng

Want to know coursera machine learning ng? we have a huge selection of coursera machine learning ng information on alibabacloud.com

Machine Learning| Andrew ng| Coursera Wunda Machine Learning Notes

continuously updating theta. Map Reduce and Data Parallelism: Many learning algorithms can be expressed as computing sums of functions over the training set. We can divide up batch gradient descent and dispatch the cost function for a subset of the data to many different machines So, we can train our algorithm in parallel. Week 11:Photo OCR: Pipeline: Text detection Character segmentation Ch

Neural Network jobs: NN Learning Coursera machine learning (Andrew Ng) WEEK 5

)/m; at End - End - -%size (J,1) -%size (J,2) - ind3 = A3-Ty; -D2 = (D3 * THETA2 (:,2: End)). *sigmoidgradient (z2); toTheta1_grad = Theta1_grad + d2'*a1/m; +Theta2_grad = Theta2_grad + d3'*a2/m; - the% ------------------------------------------------------------- *jj=0; $ Panax Notoginseng forI=1: Size (Theta1,1) - forj=2: Size (Theta1,2) theJJ = JJ + Theta1 (i,j) *theta1 (i,j) *lambda/(m*2); + End A End theSize (Theta1,1); +Size (Theta1,2); - $ forI=1: Size (THETA2,1) $

[Original] Andrew Ng chose to fill in the blanks in Coursera for Stanford machine learning.

Week 2 gradient descent for multiple variables [1] multi-variable linear model cost function Answer: AB [2] feature scaling feature Scaling Answer: d 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: [Original] Andrew Ng chose to fill in the blanks in Coursera

[Machine Learning] Coursera notes-Support Vector machines

friends, but also hope to get the high people of God's criticism!        Preface  [Machine Learning] The Coursera Note series was compiled with notes from the course I studied at the Coursera learning (Andrew ng teacher). The con

Coursera open course notes: "Advice for applying machine learning", 10 class of machine learning at Stanford University )"

networks and overfitting: The following is a "small" Neural Network (which has few parameters and is easy to be unfitted ): It has a low computing cost. The following is a "big" Neural Network (which has many parameters and is easy to overfit ): It has a high computing cost. For the problem of Neural Network overfitting, it can be solved through the regularization (λ) method. References: Machine Learning

Note for Coursera "Machine learning" 1 (1) | What are machine learning?

What are machine learning?The definitions of machine learning is offered. Arthur Samuel described it as: "The field of study that gives computers the ability to learn without being explicitly prog Rammed. " This was an older, informal definition.Tom Mitchell provides a more modern definition: 'a computer program was sa

Machine Learning Coursera Learning Summary

Coursera Andrew Ng Machine learning is really too hot, recently had time to spend 20 days (3 hours a day or so) finally finished learning all the courses, summarized as follows:(1) Suitable for getting started, speaking the comparative basis, Andrew speaks great;(2) The exer

coursera-Wunda-Machine learning-(programming exercise 7) K mean and PCA (corresponds to the 8th week course)

This series is a personal learning note for Andrew Ng Machine Learning course for Coursera website (for reference only)Course URL: https://www.coursera.org/learn/machine-learning Exerci

[Machine Learning] Coursera ml notes-Logistic regression (logistic Regression)

IntroductionThe Machine learning section records Some of the notes I've learned about the learning process, including linear regression, logistic regression, Softmax regression, neural networks, and SVM, and the main learning data from Standford Andrew Ms Ng's tutorials in Coursera

"MATLAB" machine learning (Coursera Courses Outline & Schedule)

The course covers technology:Gradient descent, linear regression, supervised/unsupervised learning, classification/logistic regression, regularization, neural network, gradient test/numerical calculation, model selection/diagnosis, learning curve, evaluation metric, SVM, K-means clustering, PCA, Map Reduce Data Parallelism, etc...The course covers applications:Message classification, tumor diagnosis, handw

Coursera Course "Machine learning" study notes (WEEK1)

This is a machine learning course that coursera on fire, and the instructor is Andrew Ng. In the process of looking at the neural network, I did find that I had a problem with a weak foundation and some basic concepts, so I wanted to take this course to find a leak. The current plan is to see the end of the neural netw

Coursera Open Class Machine Learning: Linear Regression with multiple variables

regression. The root number can also be selected based on the actual situation.Regular Equation In addition to Iteration Methods, linear algebra can be used to directly calculate $ \ matrix {\ Theta} $. For example, four groups of property price forecasts: Least Squares $ \ Theta = (\ matrix {x} ^ t \ matrix {x}) ^ {-1} \ matrix {x} ^ t \ matrix {y} $Gradient Descent, advantages and disadvantages of regular equations Gradient Descent: Desired stride $ \ Alpha $; Multiple iterations are requ

Coursera Machine Learning Study notes (i)

Before the machine learning is very interested in the holiday cannot to see Coursera machine learning all the courses, collated notes in order to experience repeatedly.I. Introduction (Week 1)-What's machine learningThere is no un

Coursera-machine Learning, Stanford:week 5

Overview Cost Function and BackPropagation Cost Function BackPropagation algorithm BackPropagation Intuition Back propagation in practice Implementation Note:unrolling Parameters Gradient Check Random initialization Put It together Application of Neural Networks Autonomous Driving Review Log 2/10/2017:all the videos; Puzzled about Backprogation 2/11/2017:reviewed backpropaga

Coursera Machine Learning Chapter 9th (UP) Anomaly Detection study notes

m>=10n and uses multiple Gaussian distributions.In practical applications, the original model is more commonly used, the average person will manually add additional variables.If the σ matrix is found to be irreversible in practical applications, there are 2 possible reasons for this:1. The condition of M greater than N is not satisfied.2. There are redundant variables (at least 2 variables are exactly the same, XI=XJ,XK=XI+XJ). is actually caused by the linear correlation of the characteristic

Stanford Coursera Machine Learning Programming Job Exercise 5 (regularization of linear regression and deviations and variances)

different lambda, the calculated training error and cross-validation error are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508The graphic is represented as follows:As

"Coursera-machine learning" Linear regression with one Variable-quiz

, i.e., all of our training examples lie perfectly on some straigh T line. If J (θ0,θ1) =0, that means the line defined by the equation "y=θ0+θ1x" perfectly fits all of our data. For the To is true, we must has Y (i) =0 for every value of i=1,2,..., m. So long as any of our training examples lie on a straight line, we'll be able to findθ0 andθ1 so, J (θ0,θ1) =0. It is not a necessary that Y (i) =0 for all of our examples. We can perfectly predict the value o

Coursera Machine Learning Study notes (10)

-Learning RateIn the gradient descent algorithm, the number of iterations required for the algorithm convergence varies according to the model. Since we cannot predict in advance, we can plot the corresponding graphs of iteration times and cost functions to observe when the algorithm tends to converge.Of course, there are some ways to automatically detect convergence, for example, we compare the change value of a cost function with a predetermined thr

Coursera Machine Learning Study notes (vi)

-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that will reduce the value of the cost function.We continue this process until a local minimum (

Ntu-coursera machine Learning: Noise and Error

, the weight of the high-weighted data is increased by 1000 times times the probability, which is equivalent to replication. However, if you are traversing the entire test set (not sampling) to calculate the error, there is no need to modify the call probability, just add the weights of the corresponding errors and divide by N. So far, we have expanded the VC Bound, which is also set up on the issue of multiple classifications!SummaryFor more discussion and exchange on

Total Pages: 9 1 2 3 4 5 .... 9 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.