not saturate, even if Zi's contribution to the second is small, and when the maximum log-likelihood is maximized, the first item causes the Zi to rise, and the second one causes the z-vector to fall all the time, in order to Get some visual sense for the second item (that summation), Log∑j exp (ZJ) can be approximated to Max J ZJ, so the approximation is based on other exp (ZK) is very small for Max J ZJ, so we can intuitively feel-log-likelihood cost funct Ion always punishes the most inaccura
Deep Learning thesis notes (8) Latest deep learning Overview
Zouxy09@qq.com
Http://blog.csdn.net/zouxy09
I have read some papers at ordinary times, but I always feel that I will slowly forget it after reading it. I did not seem to have read it again one day. So I want to sum up some useful knowledge points in my thesi
Reading List
List of reading lists and survey papers:BooksDeep learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, in preparation.Review PapersRepresentation learning:a Review and New perspectives, Yoshua Bengio, Aaron Courville, Pascal Vincent, ARXIV, 2012. The monograph or review paper Learning deep
Preface This article first introduces the build model, and then focuses on the generation of the generative Models in the build-up model (generative Adversarial Network) research and development. According to Gan main thesis, gan applied paper and gan related papers, the author sorted out 45 papers in recent two years, focused on combing the links and differences between the main papers, and revealing the research context of the generative antagonism network. The papers covered in this arti
Deep Learning notes finishing (very good)
Http://www.sigvc.org/bbs/thread-2187-1-3.html
Affirmation: This article is not the author original, reproduced from: http://www.sigvc.org/bbs/thread-2187-1-3.html
4.2, the primary (shallow layer) feature representation
Since the pixel-level feature indicates that the method has no effect, then what kind of representation is useful.
Around 1995, Bruno Olshause
Abu-mostafa is a teacher of Lin Huntian (HT Lin) and the course content of Lin is similar to this class.L 5. 2012 Kaiyu (Baidu) Zhang Yi (Rutgers) machine learning public classContent more suitable for advanced, course homepage @ Baidu Library, courseware [email protected] Dragon Star ProgramL prml/Introduction to machine learning/matrix analysis (computational)/neural Network and machine learning3 Directi
neural networks. aistats, 9, 249–256.
Glorot, X., Bordes, A., Bengio, Y. (2011).Deep Sparse rectifier Neural Networks. aistats, 315–323.
Goodfellow, I. J., Warde-farley, D., Mirza, M., Courville, A. C., Bengio, Y. (2013). Maxout Networks. In ICML.
Ham, J., Lee, D., Mika, S., Scholkopf, B. (2004). A kernel view of the dimensionality reduction of manifolds. In ICML.
Hinton, G. E., Osindero, S., T
exploited in most applications of machine learning that involve real numbers.
Many artificial intelligence tasks can be solved by designing the right set of features to extract for that task, then pro Viding these features to a simple machine learning algorithm. For example,a useful feature for speaker identification from sound is the pitch. One solution to this problem are to use machine
Today continue to use the preparation of WSE security development articles free time, perfect. NET Deep Learning Notes series (Basic). NET important points of knowledge, I have done a detailed summary, what, why, and how to achieve. Presumably many people have been exposed to these two concepts. People who have done C + + will not be unfamiliar with the concept of deep
theoretical knowledge : UFLDL data preprocessing and http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.htmlData preprocessing is a very important step in deep learning! If the acquisition of raw data is the most important step in deep learning, then the preprocessing of the raw data is an important part of
In the words of Russian MYC although is engaged in computer vision, but in school never contact neural network, let alone deep learning. When he was looking for a job, Deep learning was just beginning to get into people's eyes.
But now if you are lucky enough to be interviewed by Myc, he will ask you this question
models on a variety of platforms, from mobile phones to individual cpu/gpu to hundreds of GPU cards distributed systems.
From the current documentation, TensorFlow supports the CNN, RNN, and lstm algorithms, which are the most popular deep neural network models currently in Image,speech and NLP.
This time Google open source depth learning system TensorFlow can be applied in many places, such as speech reco
This afternoon, idle to nothing, so Baidu turned to see the recent on the pattern recognition, as well as the latest progress in target detection, there are a lot of harvest!------------------------------------AUTHOR:PKF-----------------------------------------------time:2016-1-20--------------------------------------------------------------qq:13277066461. The nature of deep learning2. The effect of deep
Requirement Description: Deep learning FPGA realizes knowledge reserveFrom: http://power.21ic.com/digi/technical/201603/46230.htmlWill the FPGA defeat the GPU and GPP and become the future of deep learning?In recent years, deep learning
9. Common models or methods of deep learning
9.1 autoencoder automatic Encoder
One of the simplest ways of deep learning is to use the features of artificial neural networks. Artificial Neural Networks (ANN) itself are hierarchical systems. If a neural network is given, let's assume that the output is the same as the i
,callbacks=[checkpointer,
History]) train ()
Personal experience: Feel Keras use is very convenient, at the same time the source code is very easy to read, we have to modify the algorithm, you can read the bottom of the source code, learning will not be like the bottom of the caffe so troublesome, personal feeling caffe the only advantage is that there are a lot of open model, the source code, , Keras is not the same, with Python,
This section mainly introduces a deep learning MATLAB version of the Toolbox, Deeplearntoolbox
The code in the Toolbox is simple and feels more suitable for learning algorithms. There are common network structures, including deep networks (NN), sparse self-coding networks (SAE), CAE, depth belief networks (DBN) (based
Deep Learning Book recommendation, deep learning bookAI Bible
Classic best-selling book in the field of deep learning! Has long ranked first in Amazon AI and machine learning boo
Transferred from: http://blog.csdn.net/zouxy09/article/details/8775518
Well, to this step, finally can talk to deep learning. Above we talk about why there are deep learning (let the machine automatically learn good features, and eliminate the manual selection process. As well as a hierarchical visual processing system
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.