Original handout of Stanford Machine Learning Course
This resource is the original handout of the Stanford machine learning course, which is AndrewNg said that a total of 20 PDF files cover some important models, algorithms, and
wide range of user personalization services, such as marketing strategies for consumers
The key to machine learning
(pattern) There is a potential pattern or rule that can be learned
(Definition) is not easy to implement programmatically
(data) has information about a pattern
The actual definition of machine learningM
Stanford University machine Learning lesson 10 "Neural Networks: Learning" study notes. This course consists of seven parts:
1) Deciding what to try next (decide what to do next)
2) Evaluating a hypothesis (Evaluation hypothesis)
3) Model selection and training/validation/test sets (Model selection and training/verific
Public Course address:Https://class.coursera.org/ml-003/class/index
INSTRUCTOR:Andrew Ng 1. Learning with large datasets (
Big Data Learning
)
The importance of data volume has been mentioned in the previous lecture on machine learning design. Remember this sentence:
findF1scoreThe algorithm with the largest value. 5. Data for Machine Learning (
Machine Learning data
)
In machine learning, many methods can be used to predict the problem. Generally, when the data size increases, the accura
some time ago on the Internet to see the Coursera Open Classroom Big Machine learning Cornerstone Course, more comprehensive and clear machine learning needs of the basic knowledge, theoretical basis to explain. There are several more important concepts and ideas in foundati
A probe into machine learning1. What is machine learningLearning refers to the skill that a person refines in the course of observing things, rather than learning, machine learning refers to the ability of a computer to gain some
increase or reduce the number of example (change 100 to 1000 or 10, etc.), reduce or increase the learning rate.elearning (Online learning)The previous algorithm has a fixed training set to train the model, when the model is well trained to classify and return the future example. Online learning is different, it updates the model parameters for each new example,
Public Course address:Https://class.coursera.org/ml-003/class/index
INSTRUCTOR:Andrew Ng 1. deciding what to try next (
Determine what to do next
)
I have already introduced some machine learning methods. It is obviously not enough to know the specific process of these methods. The key is to learn how to use them. The so-called best way to master knowledge
Deep Learning SpecializationWunda recently launched a series of courses on deep learning in Coursera with Deeplearning.ai, which is more practical compared to the previous machine learning course. The operating language also has MATLAB changed to Python to be more fit to the
is that only the input paradigm is provided for this network, and it automatically identifies its potential class rules from those examples. When the study is complete and tested, it can also be applied to new cases.
A typical example of unsupervised learning is clustering. The purpose of clustering is to bring together things that are similar, and we do not care what this class is. Therefore, a clustering algorithm usually needs to know how to c
This semester has been to follow up on the Coursera Machina learning public class, the teacher Andrew Ng is one of the founders of Coursera, machine learning aspects of Daniel. This course is a choice for those who want to understand and master machine
before, but you need to define T (Y) here:In addition, make:(t (y)) I represents the first element of the vector T (y), such as: (t (1)) 1=1 (T (1)) 2=01{.} is an indicator function, 1{true} = 1, 1{false} = 0(T (y)) i = 1{y = i}Thus, we can introduce the multivariate distribution of the exponential distribution family form:1.2 The goal is to predict the expectation of T (y), because T (y) is a vector, so the resulting output will also be a desired vector, where each element is:Corresponds to th
This semester has been to follow up on the Coursera Machina learning public class, the teacher Andrew Ng is one of the founders of Coursera, machine learning aspects of Daniel. This course is a choice for those who want to understand and master machine
First, Introduction1. Concept :
The field of study that gives computers the ability to learn without being explicitly programmed. --an older, informal definition by Arthur Samuel (for tasks that cannot be programmed directly to enable the machine to learn)
"A computer program was said to learn from experience E with respect to some class of tasks T and performance measure P, if Its performance on tasks in T, as measured by P, improves wit
be trained and predicted immediately, which is called Online learning. each of the previously learned models can do online learning, but given the real-time nature, not every model can be updated in a short time and the next prediction, and the perceptron algorithm is well suited to do online learning:The parameter Update method is: if hθ (x) = y is accurate, the parameter is not updated otherwise, θ:=θ+ y
Finally the end of the final, look at others summary: http://blog.sina.com.cn/s/blog_641289eb0101dynu.htmlContact Machine Learning also has a few years, but still only a rookie, when the first contact English is not good, do not understand the class, what things are smattering. After learning some open classes and books on the go, I began to understand some conce
Tags: tutorial set Test skills Virtualization ATI Introduction Operations Services1th Stage Basic Course -01 vmwareworkstation Virtual machine Use tutorialSuitable for objectsLearning systems and network IT courses require you to be able to build enterprise networks and server learning and experimentation environments on physical machines, and the skilled use of
calculates the accuracy of the entire system at this time:
As shown in, text recognition consists of four parts. Now we can find the system accuracy after optimization for each part. The question is, how can we improve the accuracy of the entire system? We can see from the table that, if we have optimized the text moderation part, the accuracy will be72%Add89%If we optimize the character segmentation, the accuracy is only from89%To90%If character recognition is optimized90%To100%In contr
learning.In fact, these two states are not completely divided, for example, if we are trading in a lot of fraud, then we study the problem from anomaly detection to supervise learning.Exercise: Intuitive judgment of two situationsChoosingwhat Features to useThe previous approach is to assume that the data satisfies the Gaussian distribution, and also mentions that if the distribution is not Gaussian distribution, the above method can be used, but if we convert the distribution to approximate Ga
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.