Developing a complex depth learning model using Keras + TensorFlow
This post was last edited by Oner at 2017-5-25 19:37Question guide: 1. Why Choose Keras. 2. How to install Keras and TensorFlow as the back end. 3. What is the
This weekend, I decided it is time:i is going to update my Python environment and get Keras and TensorFlow installed So I could the start doing tutorials (particularly for deep learning) using R. Although I used to is a systems administrator (about years ago), I don ' t do much installing or configuring so I guess T Hat ' s why I ' ve put the this task off for so long. And it wasn ' t unwarranted:it took me
http://blog.csdn.net/jerr__y/article/details/53695567 Introduction: This article mainly describes how to configure the GPU version of the TensorFlow environment in Ubuntu system. Mainly include:-Cuda Installation-CUDNN Installation-TensorFlow Installation-Keras InstallationAmong them, Cuda installs this part is the most important, Cuda installs after, whether is
was successful.Second, installation TensorFlowOpen Anaconda Prompt1. Upgrade Pip to the latest version:2. Create an environment named TensorFlow and install the Python3.5.2Conda Create--name TensorFlow python=3.5.2Enter Y, enter. After the installation is complete:3. Activate this environment: Activate TensorFlow4. Installing TensorFlowPip Install TensorFlowNote: To install
Keras mixed with TensorFlow Keras and TensorFlow using tensorfow Fly Keras
Recently, TensorFlow has updated its new version to 1.4. Many updates have been made, and it is of course important to add Tf.keras. After all,
Rmsprop, Adagrad, or a optimizer class object, so Rmsprop () 2. Loss function Loss: The parameter is the objective function that the model tries to minimize, can be a predefined loss function, such as categorical_crossentropy, MSE, or a loss function 3. List of indicators: For classification issues, the list is generally set to metrics=[' Accuracy ' model.compile (loss= ' Categorical_crossenTropy ', Optimizer=rmsprop (), metrics=[' accuracy ') ' Trai
Keras Installation:It is best to build in the Anaconda virtual environment:Conda create-n Environment Name python=3.6Enter the environment:Source Activate Environment nameInstall Keras:Pip Install KerasPip Install TheanoPip Install tensorflow-gpu==1.2.0If you use Theano as backend, you need to Conda install PYGPU to support parallel and gou operations.
If Modulenotfounderror:no module named ' Mkl ' appear
primitive sequence (x_1, x_2, X_3, X_4, ..., x_n) as input, built by this model !
so the question comes, how is the code implemented? Bloggers really hated the lengthy tensorflow code, so they found the more star Keras version code on GitHub and started analyzing it after cloning and running successfully.
three. Organization of data in
Today, the GPU is used to speed up computing, that feeling is soaring, close to graduation season, we are doing experiments, the server is already overwhelmed, our house server A pile of people to use, card to the explosion, training a model of a rough calculation of the iteration 100 times will take 3, 4 days of time, not worth the candle, Just next door there is an idle GPU depth learning server, decided to get started.
Deep learning I was also pre
RNN model of deep learning--keras training
RNN principle: (Recurrent neural Networks) cyclic neural network. It interacts with each neuron in the hidden layer and is able to handle the problems associated with the input and back. In RNN, the output from the previous moment is passed along with the input of the next moment, which is equivalent to a stream of data over time. Unlike Feedforward neural network
We often need to save the PB file of the TensorFlow model, which is very handy when using the Tf.graph_util.convert_variables_to_constants function. 1. Training Network: fully_conected.py
Import argparse import OS import time import TensorFlow as TF import datasets_mnist # Basic
Learning notes TF049: TensorFlow model storage and loading, queue threads, loading data, custom operations, tf049tensorflow
Generate the checkpoint file (chekpoint file). The extension is. ckpt, And the tf. train. Saver object is generated by calling Saver. save. Contains weights and other program-Defined variables, excluding the graph structure. Another program needs to re-create the graphic structure to t
The TensorFlow training model is usually written using the Python API and simply records how the models are invoked in Java after they are saved.
In Python, the model is saved using the following API:
# Save binary model
Output_graph_def = tf.graph_util.convert_variables_to_constants (Sess, Sess.graph_def, Output_node
In the previous article, "TensorFlow load pre-training model and save Model", we learned how to use the pre-training model. Note, however, that in the previous article, you must have at least 4 files to use the pre-training model:
Checkpoint
Mymodel.meta
mymodel.data-00000-o
These images will be trained in this section, as described in the previous chapters, and we can get a good sample of the training samples. The main use is Keras.
I. Building a DataSet class
1.1 Init Complete Initialization work
def __init__ (self,path_name):
self.train_img = none
self.train_labels = None
self.valid_img = None
self.valid_labels = None
self.test_img = None
self.test_labels = non
("Tensor_name:", key)
print (Reader.get_tensor (key))
If you want to initialize your own network with the pretrained weights of some layers, you can do it in sess by doing the following:
With Tf.variable_scope (", reuse = True):
sess.run (Tf.get_variable (your_var_name). Assign (Reader.get_tensor ( Pretrained_var_name)))The. PB weight graph can be obtained using the following method:
Import OS
import
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.