Read about machine learning stanford coursera, The latest news, videos, and discussion topics about machine learning stanford coursera from alibabacloud.com
Stanford University machine Learning lesson 10 "Neural Networks: Learning" study notes. This course consists of seven parts:
1) Deciding what to try next (decide what to do next)
2) Evaluating a hypothesis (Evaluation hypothesis)
3) Model selection and training/validation/test sets (Model selection and training/verific
Week 2 gradient descent for multiple variables
[1] multi-variable linear model cost function
Answer: AB
[2] feature scaling feature Scaling
Answer: d
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
[Original] Andrew Ng chose to fill in the blanks in Coursera for Sta
friends, but also hope to get the high people of God's criticism! Preface [Machine Learning] The Coursera Note series was compiled with notes from the course I studied at the Coursera learning (Andrew ng teacher). The content covers linear regression, logistic regre
continuously updating theta.
Map Reduce and Data Parallelism:
Many learning algorithms can be expressed as computing sums of functions over the training set.
We can divide up batch gradient descent and dispatch the cost function for a subset of the data to many different machines So, we can train our algorithm in parallel.
Week 11:Photo OCR:
Pipeline:
Text detection
Character segmentation
Ch
What are machine learning?The definitions of machine learning is offered. Arthur Samuel described it as: "The field of study that gives computers the ability to learn without being explicitly prog Rammed. " This was an older, informal definition.Tom Mitchell provides a more modern definition: 'a computer program was sa
Original handout of Stanford Machine Learning Course
This resource is the original handout of the Stanford machine learning course, which is AndrewNg said that a total of 20 PDF files cover some important models, algorithms, and
training set is appropriate.3. No supervised learningExample: In the case of the tumour above, the point in the figure does not know the correct answer, but is from you to find a certain structure, that is, clustering .Applied in the fields of biological genetic engineering, image processing, computer vision, etc.Example: Cocktail party issuesPick up the sounds you're interested in during a noisy cocktail partyUse two different positions to separate the sound from different positionscan also be
IntroductionThe Machine learning section records Some of the notes I've learned about the learning process, including linear regression, logistic regression, Softmax regression, neural networks, and SVM, and the main learning data from Standford Andrew Ms Ng's tutorials in Coursera
Coursera Andrew Ng Machine learning is really too hot, recently had time to spend 20 days (3 hours a day or so) finally finished learning all the courses, summarized as follows:(1) Suitable for getting started, speaking the comparative basis, Andrew speaks great;(2) The exercise is relatively easy, but to carefully con
regression.
The root number can also be selected based on the actual situation.Regular Equation
In addition to Iteration Methods, linear algebra can be used to directly calculate $ \ matrix {\ Theta} $.
For example, four groups of property price forecasts:
Least Squares
$ \ Theta = (\ matrix {x} ^ t \ matrix {x}) ^ {-1} \ matrix {x} ^ t \ matrix {y} $Gradient Descent, advantages and disadvantages of regular equations Gradient Descent:
Desired stride $ \ Alpha $;
Multiple iterations are requ
This series is a personal learning note for Andrew Ng Machine Learning course for Coursera website (for reference only)Course URL: https://www.coursera.org/learn/machine-learning Exercise 7--k-means and PCA
Download
Before the machine learning is very interested in the holiday cannot to see Coursera machine learning all the courses, collated notes in order to experience repeatedly.I. Introduction (Week 1)-What's machine learningThere is no un
classification model, which gives us a better evaluation value and gives us a more direct way to evaluate the good and bad of the model. One last thing to keep in mind, in the definition of precision and recall, we define precision and recall rates, and we habitually use Y=1 to show that this class appears very little. So if we try to detect a very rare situation, like cancer. I hope it's a rare situation where precision and recall are defined as Y=1 rather than y=0, as some of the fewer classe
is that only the input paradigm is provided for this network, and it automatically identifies its potential class rules from those examples. When the study is complete and tested, it can also be applied to new cases.
A typical example of unsupervised learning is clustering. The purpose of clustering is to bring together things that are similar, and we do not care what this class is. Therefore, a clustering algorithm usually needs to know how to c
assumptions tend to be 0, but the actual labels are 1, both of which indicate a miscarriage of judgment. Otherwise, we define the error value as 0, at which point the value is assumed to correctly classify the sample Y.Then, we can use the error rate errors to define the test error, that is, 1/mtest times the error rate errors of H (i) (xtest) and Y (i) (sum from I=1 to Mtest).Stanford University public Class mac
This is a machine learning course that coursera on fire, and the instructor is Andrew Ng. In the process of looking at the neural network, I did find that I had a problem with a weak foundation and some basic concepts, so I wanted to take this course to find a leak. The current plan is to see the end of the neural network, the back is not necessarily seen.Of cour
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.