machine learning stanford coursera

Read about machine learning stanford coursera, The latest news, videos, and discussion topics about machine learning stanford coursera from alibabacloud.com

Coursera open course notes: "Advice for applying machine learning", 10 class of machine learning at Stanford University )"

Stanford University machine Learning lesson 10 "Neural Networks: Learning" study notes. This course consists of seven parts: 1) Deciding what to try next (decide what to do next) 2) Evaluating a hypothesis (Evaluation hypothesis) 3) Model selection and training/validation/test sets (Model selection and training/verific

[Original] Andrew Ng chose to fill in the blanks in Coursera for Stanford machine learning.

Week 2 gradient descent for multiple variables [1] multi-variable linear model cost function Answer: AB [2] feature scaling feature Scaling Answer: d 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: [Original] Andrew Ng chose to fill in the blanks in Coursera for Sta

Stanford Coursera Machine Learning Programming Job Exercise 5 (regularization of linear regression and deviations and variances)

different lambda, the calculated training error and cross-validation error are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508The graphic is represented as follows:As

[Machine Learning] Coursera notes-Support Vector machines

friends, but also hope to get the high people of God's criticism!        Preface  [Machine Learning] The Coursera Note series was compiled with notes from the course I studied at the Coursera learning (Andrew ng teacher). The content covers linear regression, logistic regre

Machine Learning| Andrew ng| Coursera Wunda Machine Learning Notes

continuously updating theta. Map Reduce and Data Parallelism: Many learning algorithms can be expressed as computing sums of functions over the training set. We can divide up batch gradient descent and dispatch the cost function for a subset of the data to many different machines So, we can train our algorithm in parallel. Week 11:Photo OCR: Pipeline: Text detection Character segmentation Ch

Note for Coursera "Machine learning" 1 (1) | What are machine learning?

What are machine learning?The definitions of machine learning is offered. Arthur Samuel described it as: "The field of study that gives computers the ability to learn without being explicitly prog Rammed. " This was an older, informal definition.Tom Mitchell provides a more modern definition: 'a computer program was sa

Excellent materials for getting started with Machine Learning: original handouts of the Stanford machine learning course (including open course videos)

Original handout of Stanford Machine Learning Course This resource is the original handout of the Stanford machine learning course, which is AndrewNg said that a total of 20 PDF files cover some important models, algorithms, and

Machine Learning-Stanford: Learning note 1-motivation and application of machine learning

training set is appropriate.3. No supervised learningExample: In the case of the tumour above, the point in the figure does not know the correct answer, but is from you to find a certain structure, that is, clustering .Applied in the fields of biological genetic engineering, image processing, computer vision, etc.Example: Cocktail party issuesPick up the sounds you're interested in during a noisy cocktail partyUse two different positions to separate the sound from different positionscan also be

[Machine Learning] Coursera ml notes-Logistic regression (logistic Regression)

IntroductionThe Machine learning section records Some of the notes I've learned about the learning process, including linear regression, logistic regression, Softmax regression, neural networks, and SVM, and the main learning data from Standford Andrew Ms Ng's tutorials in Coursera

Notes of machine Learning (Stanford), Week 6, Advice for applying machine learning

are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508 Training errors, cross-validation errors, and relationships between lambda graphs are represented as follows:When th

Machine Learning Coursera Learning Summary

Coursera Andrew Ng Machine learning is really too hot, recently had time to spend 20 days (3 hours a day or so) finally finished learning all the courses, summarized as follows:(1) Suitable for getting started, speaking the comparative basis, Andrew speaks great;(2) The exercise is relatively easy, but to carefully con

Coursera Open Class Machine Learning: Linear Regression with multiple variables

regression. The root number can also be selected based on the actual situation.Regular Equation In addition to Iteration Methods, linear algebra can be used to directly calculate $ \ matrix {\ Theta} $. For example, four groups of property price forecasts: Least Squares $ \ Theta = (\ matrix {x} ^ t \ matrix {x}) ^ {-1} \ matrix {x} ^ t \ matrix {y} $Gradient Descent, advantages and disadvantages of regular equations Gradient Descent: Desired stride $ \ Alpha $; Multiple iterations are requ

Neural Network jobs: NN Learning Coursera machine learning (Andrew Ng) WEEK 5

)/m; at End - End - -%size (J,1) -%size (J,2) - ind3 = A3-Ty; -D2 = (D3 * THETA2 (:,2: End)). *sigmoidgradient (z2); toTheta1_grad = Theta1_grad + d2'*a1/m; +Theta2_grad = Theta2_grad + d3'*a2/m; - the% ------------------------------------------------------------- *jj=0; $ Panax Notoginseng forI=1: Size (Theta1,1) - forj=2: Size (Theta1,2) theJJ = JJ + Theta1 (i,j) *theta1 (i,j) *lambda/(m*2); + End A End theSize (Theta1,1); +Size (Theta1,2); - $ forI=1: Size (THETA2,1) $

"MATLAB" machine learning (Coursera Courses Outline & Schedule)

The course covers technology:Gradient descent, linear regression, supervised/unsupervised learning, classification/logistic regression, regularization, neural network, gradient test/numerical calculation, model selection/diagnosis, learning curve, evaluation metric, SVM, K-means clustering, PCA, Map Reduce Data Parallelism, etc...The course covers applications:Message classification, tumor diagnosis, handw

coursera-Wunda-Machine learning-(programming exercise 7) K mean and PCA (corresponds to the 8th week course)

This series is a personal learning note for Andrew Ng Machine Learning course for Coursera website (for reference only)Course URL: https://www.coursera.org/learn/machine-learning Exercise 7--k-means and PCA Download

Coursera Machine Learning Study notes (i)

Before the machine learning is very interested in the holiday cannot to see Coursera machine learning all the courses, collated notes in order to experience repeatedly.I. Introduction (Week 1)-What's machine learningThere is no un

Stanford University public Class machine learning: Machines Learning System Design | Error metrics for skewed classes (definition of skew class issues and evaluation measures for skew class issues: precision ratio (precision) and recall rate (recall))

classification model, which gives us a better evaluation value and gives us a more direct way to evaluate the good and bad of the model. One last thing to keep in mind, in the definition of precision and recall, we define precision and recall rates, and we habitually use Y=1 to show that this class appears very little. So if we try to detect a very rare situation, like cancer. I hope it's a rare situation where precision and recall are defined as Y=1 rather than y=0, as some of the fewer classe

Stanford Machine Learning Course Note (1) Supervised learning and unsupervised learning

is that only the input paradigm is provided for this network, and it automatically identifies its potential class rules from those examples. When the study is complete and tested, it can also be applied to new cases. A typical example of unsupervised learning is clustering. The purpose of clustering is to bring together things that are similar, and we do not care what this class is. Therefore, a clustering algorithm usually needs to know how to c

Stanford University public Class machine learning: Advice for applying machines learning-evaluatin a phpothesis (how to evaluate the assumptions given by the learning algorithm and how to prevent overfitting or lack of fit)

assumptions tend to be 0, but the actual labels are 1, both of which indicate a miscarriage of judgment. Otherwise, we define the error value as 0, at which point the value is assumed to correctly classify the sample Y.Then, we can use the error rate errors to define the test error, that is, 1/mtest times the error rate errors of H (i) (xtest) and Y (i) (sum from I=1 to Mtest).Stanford University public Class mac

Coursera Course "Machine learning" study notes (WEEK1)

This is a machine learning course that coursera on fire, and the instructor is Andrew Ng. In the process of looking at the neural network, I did find that I had a problem with a weak foundation and some basic concepts, so I wanted to take this course to find a leak. The current plan is to see the end of the neural network, the back is not necessarily seen.Of cour

Total Pages: 9 1 2 3 4 5 .... 9 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.