join and specify Keys (row index) \ r \ n ', concat ([df1,df2],keys=[' A ', ' B ']) # Here are the duplicate data print ' go back \ r \ n ', concat ([df1,df2],ignore_index=true). Drop_duplicates ()The output is:Internal connection by Axis City rank City rank0 Chicago 1 Chicago San Francisco 2 Boston New York City 3 Los Angeles 5 outer Joins and assign keys (row index) City Ranka 0 Chicago 1 1 San F
1 concat
The Concat function is a method underneath the pandas that allows for a simple fusion of data based on different axes.
Pd.concat (Objs, axis=0, join= ' outer ', Join_axes=none, Ignore_index=false, Keys=none, Levels=none, Names=None,
Verify_integrity=false)1 2 1 2 1 2
Parameter descriptionObjs:series,dataframe or a sequence of panel compositions lsitAxis: Axis that needs to
, how to do? For more information please go to other blogs, where more detailed instructions are available .Pandas import time data for format conversion Draw multiple graphs on one canvas and add legends1 fromMatplotlib.font_managerImportfontproperties2Font = fontproperties (fname=r"C:\windows\fonts\STKAITI. TTF", size=14)3colors = ["Red","Green"]#the color used to specify the line4Labels = ["Jingdong","
Http://www.cnblogs.com/batteryhp/p/5006274.htmlPandas is the preferred library for subsequent content in this book. The pandas can meet the following requirements:
Data structure with automatic or explicit data alignment by axis. This prevents many common errors caused by data misalignment and
Data conversionDelete duplicate elements The duplicated () function of the Dataframe object can be used to detect duplicate rows and return a series object with the Boolean type. Each element pairsshould be a row, if the row repeats with other rows (that is, the row is not the first occurrence), the element is true, and if it is not repeated with the preceding, the metaThe vegetarian is false.A Series object that returns an element as a Boolean is of
The following for you to share a Python data Analysis Library Pandas basic operation method, has a good reference value, I hope to help you. Come and see it together.
What is Pandas?
Is it it?
。。。。 Apparently pandas is not so cute as this guy ....
Let's take a look at how
PandasPandas is a popular open source Python project that takes the name of panel data and Python data analysis.Pandas has two important data structures: Dataframe and seriesThe dataframe of PANDAS
First of all, for those unfamiliar with Pandas, Pandas is the most popular data analysis library in the Python ecosystem. It can accomplish many tasks, including:
Read/write data in different formats
Select a subset of data
']df_obj[' user number '].isin (alist) #将要过滤的数据放入字典中, uses Isin to filter the data, returns the row index and the results of each row filter, and returns if the match is turedf_obj[df_obj[' user number '].isin (alist)] #获取匹配结果为ture的行Filter data using Dataframe blur (like in sql):df_obj[df_obj[' package '].str.contains (R '. * Voice cdma.* ')] #使用正则表达式进行模糊匹配, * match 0 or unlimited, match 0 or 1 timesData c
How to quickly get started using Python for financial data analysisIntroduction:This series of posts "quantitative small classroom", through practical cases to teach beginners to use Python, pandas for financial data processing, hope to be helpful to the big home." must -rea
This article mainly introduces how to use Python pandas framework to operate data in Excel files, including basic operations such as unit format conversion and classification and Summarization. For more information, see
Introduction
The purpose of this article is to show you how to use pandas to execute some common Ex
1, Pandas IntroductionThe Python data analysis Library or pandas is a numpy-based tool that was created to solve the data analytics task. Pandas incorporates a number of libraries and a number of standard
The source of this article:Python for Data Anylysis:chapter 5Ten mintues to Pandas:http://pandas.pydata.org/pandas-docs/stable/10min.html#min1. Pandas IntroductionAfter several years of development, pandas has become the most commonly used package in Python processing
This article mainly introduced the Python pandas in the Dataframe type data operation function method, has certain reference value, now shares to everybody, has the need friend to refer to
The Python data analysis tool pandas Dat
Introduction
The purpose of this article is to show you how to use pandas to perform some common Excel tasks. Some examples are trivial, but I think showing these simple things is just as important as the complex functions you can find elsewhere. As an extra benefit, I'm going to do some fuzzy string matching to show some little tricks, and show how pandas uses the complete
Use the pandas framework of Python to perform data tutorials in Excel files,
Introduction
The purpose of this article is to show you how to use pandas to execute some common Excel tasks. Some examples are trivial, but I think it is equally important to present these simple things with complex functions that you can fin
Python captures financial data, pandas performs data analysis and visualization series (to understand the needs), pythonpandasFinally, I hope that it is not the preface of the preface. It is equivalent to chatting and chatting. I think a lot of things are coming from the discussion. For example, if you need something,
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.