using the specified GPU and GPU memory in TensorFlow
This document is set up using the GPU 3 settings used by the GPU 2 Python code settings used in the 1 Terminal execution Program TensorFlow use of the memory size 3.1 quantitat
Document Source reprint: http://blog.csdn.net/u010099080/article/details/53418159Http://blog.nitishmutha.com/tensorflow/2017/01/22/TensorFlow-with-gpu-for-windows.htmlPre-Installation PreparationThere are two versions of TensorFlow: CPU version and GPU version. The
Anaconda show ijstokes/ TensorFlow command to view the details of the package where the link and installation commands, copy returned to the installation command input terminal, where the installation command for Conda install--channel https://conda.anaconda.org/ Ijstokes TensorFlow, you can install according to the specific installation package.
Note: If you have a GP
Win10 TensorFlow (GPU) installation detailedWritten in front: TensorFlow is Google's second generation of AI learning systems based on Distbelief, and its naming comes from its own operating principles. Tensor (tensor) means that n-dimensional arrays, flow (flow) means that based on the calculation of the flow graph, the Tens
http://blog.csdn.net/jerr__y/article/details/53695567 Introduction: This article mainly describes how to configure the GPU version of the TensorFlow environment in Ubuntu system. Mainly include:-Cuda Installation-CUDNN Installation-TensorFlow Installation-Keras InstallationAmong them, Cuda installs this part is the most important, Cuda installs after, whether is
Deep Learning Library packages Theano, Lasagne, and TensorFlow support GPU installation in Ubuntu
With the popularity of deep learning, more and more people begin to use deep learning to train their own models. GPU training is much faster than the CPU, allowing models that require one week of training to be completed within one day. This post explains how to inst
and the version information indicates that the installation was successful.(2), download CUDNNTensorFlow version different, the need for the CUDNN version is not the same, see TensorFlow release notes, such as: tensorflow1.3 Release Notes
Configure CUDNN
Download to the corresponding version of CUDNN (tensorflow1.3 need cuDNN6, can be downloaded to https://www.zhihu.com/question/37082272), unzip:
The extracted bin directory is
install Libcupti-dev3. When the above environment is ready, the installation is very simpleIf you are using Anaconda, the installation steps are as follows:Conda create-n tensorflow python=2.7 # or python=3.3, etc.SOURCE Activate TensorFlowPip Install--ignore-installed--upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_
Installation Environment
Win10
Python3.6.4
More than 3.5 version can be, currently tensorflow only support 64-bit python3.5 above version
NumPy
After installing Python, open the terminal cmd input PIP3 install NumPy
Specific ProcessDownload installation
Cuda8.0,
must be 8.0 version. Download the address and follow the image below to download the local installation package.
If the installation is wrong remember to uninstall the previous removal c
Installation Environment:
Windows 64bit
Gpu:geforce GT 720
python:3.5.3
Cuda:8
First download the Anaconda3 version of Win10 64bit and install the Python3.5 release. Because currently TensorFlow only supports Python3.5 for Windows. You can download the Anaconda installation package directly, there is no problem. (Tsinghua Mirror https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/)
There are two versions of TensorFlo
Installation InstructionsPlatform: Currently available on Ubuntu, Mac OS, WindowsVersion: GPU version, CPU version availableInstallation mode: PIP mode, Anaconda modeTips:
Currently supports python3.5.x on Windows
GPU version requires cuda8,cudnn5.1
Installation progress2017/3/4 Progress:Anaconda 4.3 (corresponding to python3.6) is being installed, deleted, nothing.2017/3/5 Progress:Anacon
Get ready:System environment: WINDOWS10 + Anaconda3 + pycharm(1) environment configuration:Open Anaconda Prompt, enter the Tsinghua warehouse image, so the update will be faster:Input:Conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/--set show_channel_ URLs YesAlso in Anaconda Prompt use Anaconda to create a python3.5 environment, the environment name is TensorFlow, enter the following command:Conda create-n
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:119] Couldn ' t open CUDA library Cublas64_80.dllI c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\cuda\cuda_blas.cc : 2294] Unable to load Cublas DSO.I c:\tf_jenkins\home\
Catalogue
Graphics driver Installation
Cuda Installation
CUDNN Installation
TENSORFLOW-GPU Installation
this time using the host configuration:CPU:i7-8700k graphics :gtx-1080tiFirst, install the video driverOpen a Command Window (ctrl+alt+t)sudo apt-get purge nvidia*sudo add-apt-repository ppa:graphics-drivers/ppasudo apt-sudoinstall nvidia-384 nvidia-settingsif the error Add-apt-r
Environment: virtualenv xxx_pyvirtualenv -p python3 xxx_pyEnter the environment:source xxx_py/bin/activateExit:deactivate
Use Tsinghua Mirror
Temporary usepip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
Set as Defaultpip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
Resources:Tsinghua PyPI Mirror Use HelpVIRTUALENV Introduction and basic useOne of the essential artifacts of Python development: virtualenvvirtualenv
Win10 + python3.6 + VSCode + tensorflow-gpu + keras + cuda8 + cuDN6N environment configuration, win10cudn6n
Preface:
Before getting started, I knew almost nothing about python or tensorflow, so I took a lot of detours When configuring this environment, it took a whole week to complete the environment... However, the most annoying thing is that it is difficult to
you can play with no GPU. Van Gogh painting: Ubuntu TensorFlow CPU Edition
July Online Development/marketing team Xiao Zhe, Li Wei, JulyDate: September 27, 2016First, prefaceSeptember 22, our development/marketing team of two colleagues using DL study Van Gogh painting, Installation Cuda 8.0 times countless pits, many friends seek refuge from the pit. Therefore, 3 days later, September 25, the tutorial
TensorFlow Serving,gpu
TensorFlow serving is an open source tool that is designed to deploy a trained model for inference.TensorFlow serving GitHub AddressThis paper mainly introduces the installation of TensorFlow serving and supports the GPU model. Install dependent Bazel
Install the SDK in the correct order and strictly install the specified version.
1. download and install the strict version of Cuda and cudnn. Other versions do not work. For example, if 9.0 is required, you cannot set 9.1. Https://www.tensorflow.org/install/install_windows
1.1. Delete c: \ Program Files \ NVIDIA Corporation \ installer2 before installing 9.0 pattern. Otherwise, the system will crash.
1.2. After cudnn is installed, check whether c: \ Program Files \ nvidia
Reprint Please specify:Look at Daniel's small freshness : http://www.cnblogs.com/luruiyuan/This article original website : http://www.cnblogs.com/luruiyuan/p/6660142.htmlThe Ubuntu version I used was 16.04, and using Gnome as the desktop (which doesn't matter) has gone through a lot of twists and turns and finally completed the installation of Keras with TensorFlow as the back end.Installation of the TENSORFLOW
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.