Create a mesh by ogre

Source: Internet
Author: User

There is a tutorial on the official website, but the format is messy when the code is copied, and you have to adjust it yourself.

void createColourCube() { /// Create the mesh via the MeshManager Ogre::MeshPtr msh = MeshManager::getSingleton().createManual("ColourCube", "General");  /// Create one submesh SubMesh* sub = msh->createSubMesh();  const float sqrt13 = 0.577350269f; /* sqrt(1/3) */  /// Define the vertices (8 vertices, each consisting of 2 groups of 3 floats const size_t nVertices = 8; const size_t vbufCount = 3*2*nVertices; float vertices[vbufCount] = { -100.0,100.0,-100.0, //0 position -sqrt13,sqrt13,-sqrt13, //0 normal 100.0,100.0,-100.0, //1 position sqrt13,sqrt13,-sqrt13, //1 normal 100.0,-100.0,-100.0, //2 position sqrt13,-sqrt13,-sqrt13, //2 normal -100.0,-100.0,-100.0, //3 position-sqrt13,-sqrt13,-sqrt13, //3 normal -100.0,100.0,100.0, //4 position -sqrt13,sqrt13,sqrt13, //4 normal 100.0,100.0,100.0, //5 position sqrt13,sqrt13,sqrt13, //5 normal 100.0,-100.0,100.0, //6 position sqrt13,-sqrt13,sqrt13, //6 normal -100.0,-100.0,100.0, //7 position-sqrt13,-sqrt13,sqrt13, //7 normal};  RenderSystem* rs = Root::getSingleton().getRenderSystem(); RGBA colours[nVertices]; RGBA *pColour = colours;// Use render system to convert colour value since colour packing varies rs->convertColourValue(ColourValue(1.0,0.0,0.0), pColour++); //0 colourrs->convertColourValue(ColourValue(1.0,1.0,0.0), pColour++); //1 colour rs->convertColourValue(ColourValue(0.0,1.0,0.0), pColour++); //2 colour rs->convertColourValue(ColourValue(0.0,0.0,0.0), pColour++); //3 colour rs->convertColourValue(ColourValue(1.0,0.0,1.0), pColour++); //4 colourrs->convertColourValue(ColourValue(1.0,1.0,1.0), pColour++); //5 colour rs->convertColourValue(ColourValue(0.0,1.0,1.0), pColour++); //6 colour rs->convertColourValue(ColourValue(0.0,0.0,1.0), pColour++); //7 colour  /// Define 12 triangles (two triangles per cube face) /// The values in this table refer to vertices in the above table const size_t ibufCount = 36; unsigned short faces[ibufCount] = { 0,2,3, 0,1,2, 1,6,2, 1,5,6, 4,6,5, 4,7,6, 0,7,4, 0,3,7, 0,5,1, 0,4,5, 2,7,3, 2,6,7 };  /// Create vertex data structure for 8 vertices shared between submeshes msh->sharedVertexData = new VertexData();msh->sharedVertexData->vertexCount = nVertices;  /// Create declaration (memory format) of vertex data VertexDeclaration* decl = msh->sharedVertexData->vertexDeclaration; size_t offset = 0;// 1st buffer decl->addElement(0, offset, VET_FLOAT3, VES_POSITION); offset += VertexElement::getTypeSize(VET_FLOAT3); decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL); offset += VertexElement::getTypeSize(VET_FLOAT3); /// Allocate vertex buffer of the requested number of vertices (vertexCount) /// and bytes per vertex (offset) HardwareVertexBufferSharedPtr vbuf =        HardwareBufferManager::getSingleton().createVertexBuffer(      offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_STATIC_WRITE_ONLY); /// Upload the vertex data to the card vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true); /// Set vertex buffer binding so buffer 0 is bound to our vertex buffer VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;  bind->setBinding(0, vbuf);  // 2nd buffer offset = 0; decl->addElement(1, offset, VET_COLOUR, VES_DIFFUSE); offset += VertexElement::getTypeSize(VET_COLOUR); /// Allocate vertex buffer of the requested number of vertices (vertexCount)  /// and bytes per vertex (offset) vbuf = HardwareBufferManager::getSingleton().createVertexBuffer( offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_STATIC_WRITE_ONLY); /// Upload the vertex data to the card vbuf->writeData(0, vbuf->getSizeInBytes(), colours, true);  /// Set vertex buffer binding so buffer 1 is bound to our colour buffer bind->setBinding(1, vbuf);  /// Allocate index buffer of the requested number of vertices (ibufCount)  HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton(). createIndexBuffer( HardwareIndexBuffer::IT_16BIT,  ibufCount,  HardwareBuffer::HBU_STATIC_WRITE_ONLY);  /// Upload the index data to the card ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);  /// Set parameters of the submesh sub->useSharedVertices = true; sub->indexData->indexBuffer = ibuf; sub->indexData->indexCount = ibufCount; sub->indexData->indexStart = 0;  /// Set bounding information (for culling) msh->_setBounds(AxisAlignedBox(-100,-100,-100,100,100,100)); msh->_setBoundingSphereRadius(Math::Sqrt(3*100*100));  /// Notify -Mesh object that it has been loaded msh->load(); }

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.