Distinct Subsequences solution report, subsequences
Question: give two strings S and T to determine the number of times T appears in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie,"ACE"Is a subsequence"ABCDE"While"AEC"Is not ).
Here is an example:
S ="rabbbit", T ="rabbit"
Return3.
-----------------------------------------------------
Thought 1: recursion (TLE)
If the current character is the same, the number of matching methods after S and T are added to the result
If the current character is different, the pointer of S is moved back for Recursive calculation.
class Solution {private: int cnt; int len_s; int len_t;public: Solution():cnt(0){} void Count(string S,string T, int idx_ss, int idx_ts){ if(idx_ts == len_t){ cnt++; return; } int i,j,k; for (i=idx_ss; i<len_s; i++) { if (S[i] == T[idx_ts]) { Count(S, T, i + 1, idx_ts + 1); } } } int numDistinct(string S, string T) { len_s = S.length(); len_t = T.length(); Count(S, T, 0, 0); return cnt; }};
-----------------------------------------------------
Idea 2: DP
If the current character is the same, the dp [I] [j] result is equivalent to using S [I] (dp [I-1] [J-1]) sum of the number of [I] (dp [I-1] [j]) Methods
If the current character is different, dp [I] [j] = dp [I-1] [j]
class Solution {private: int len_s; int len_t;public: int Count(string S,string T){ int i,j; int dp[len_s][len_t]; memset(dp, 0, sizeof(dp)); if (S[0]==T[0]) { dp[0][0] = 1; } for(i=1;i<len_s;i++){ dp[i][0] = dp[i-1][0]; if (T[0]==S[i]) { dp[i][0]++; } } for (i=1; i<len_s; i++) { for (j=1; j<len_t && j<=i; j++) { if (S[i]!=T[j]) { dp[i][j] = dp[i-1][j]; //cout<<dp[i-1][j]<<endl; } else{ dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; //dp[i-1][j-1]: use S[i], as S[i]==T[j] //dp[i-1][j] : don't use S[i] //cout<<dp[i][j]<<endl; } } } return dp[len_s-1][len_t-1]; } int numDistinct(string S, string T) { len_s = S.length(); len_t = T.length(); return Count(S, T); }};