tensorflow-Correlation Apitensorflow Correlation function understanding
Task Time: Unknown time
Tf.truncated_normal
truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
Function Description:
Produces a truncated normal distribution random number, the value range is [mean - 2 * stddev, mean + 2 * stddev] .
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| Shape |
Is |
1-dimensional shaping tensor or array |
Dimensions of the output tensor |
| Mean |
Whether |
0 dimensional tensor or value |
Mean value |
| StdDev |
Whether |
0 dimensional tensor or value |
Standard deviation |
| Dtype |
Whether |
Dtype |
Output type |
| Seed |
Whether |
Numerical |
Random seed, if seed is assigned, produces the same random number each time |
| Name |
Whether |
String |
Operation name |
Example code:
You can now create the source file truncated_normal.pyin the /home/ubuntu directory:
Example code:/home/ubuntu/truncated_normal.py
#!/usr/bin/pythonimport tensorflow as tfinitial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1)print tf.Session().run(initial)
Then execute:
python /home/ubuntu/truncated_normal.py
Execution Result:
Will get a value range [-2, 2] of the 3 * 3 matrix, you can also try to modify the source code to see what changes in the output results?
Tf.constant
constant( value, dtype=None, shape=None, name=‘Const‘, verify_shape=False)
Function Description:
Generates a constant tensor of a shape dimension based on value values
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| Value |
Is |
Constant Value or list |
The value of the output tensor |
| Dtype |
Whether |
Dtype |
Output tensor element type |
| Shape |
Whether |
1-dimensional shaping tensor or array |
Dimensions of the output tensor |
| Name |
Whether |
String |
Tensor name |
| Verify_shape |
Whether |
Boolean |
Detects if shape is the same shape as value, and if it is fasle, the last element will be used to complete the shape |
Example code:
You can now create the source file constant.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/constant.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npa = tf.constant([1,2,3,4,5,6],shape=[2,3])b = tf.constant(-1,shape=[3,2])c = tf.matmul(a,b)e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3])f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2])g = tf.matmul(e,f)with tf.Session() as sess: print sess.run(a) print ("##################################") print sess.run(b) print ("##################################") print sess.run(c) print ("##################################") print sess.run(e) print ("##################################") print sess.run(f) print ("##################################") print sess.run(g)
Then execute:
python /home/ubuntu/constant.py
Execution Result:
- a:2x3 dimension tensor;
- b:3x2 dimension tensor;
- c:2x2 dimension tensor;
- e:2x2x3 dimension tensor;
- f:2x3x2 dimension tensor;
- g:2x2x2 dimension tensor.
You can also try to modify the source code to see what happens to the output?
Tf.placeholder
placeholder( dtype, shape=None, name=None)
Function Description:
is a placeholder that needs to be supplied with data at execution time
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| Dtype |
Is |
Dtype |
Placeholder data type |
| Shape |
Whether |
1-dimensional shaping tensor or array |
Placeholder Dimension |
| Name |
Whether |
String |
Placeholder Name |
Example code:
You can now create the source file placeholder.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/placeholder.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npx = tf.placeholder(tf.float32,[None,10])y = tf.matmul(x,x)with tf.Session() as sess: rand_array = np.random.rand(10,10) print sess.run(y,feed_dict={x:rand_array})
Then execute:
python /home/ubuntu/placeholder.py
Execution Result:
Outputs the tensor of a 10x10 dimension. You can also try to modify the source code to see what happens to the output?
Tf.nn.bias_add
bias_add( value, bias, data_format=None, name=None)
Function Description:
Adding the deviation item bias to value can be seen as a special case of tf.add where the bias must be one-dimensional and the same as the last dimension of value, and the data type must be the same as value.
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| Value |
Is |
Tensor |
Data types are float, double, Int64, Int32, Uint8, Int16, int8, complex64, or complex128 |
| Bias |
Is |
1-dimensional tensor |
Dimensions must be equal to the last dimension of value |
| Data_format |
Whether |
String |
Data format, supporting ' NHWC ' and ' NCHW ' |
| Name |
Whether |
String |
Operation name |
Example code:
You can now create the source file bias_add.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/bias_add.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npa = tf.constant([[1.0, 2.0],[1.0, 2.0],[1.0, 2.0]])b = tf.constant([2.0,1.0])c = tf.constant([1.0])sess = tf.Session()print sess.run(tf.nn.bias_add(a, b)) #print sess.run(tf.nn.bias_add(a,c)) errorprint ("##################################")print sess.run(tf.add(a, b))print ("##################################")print sess.run(tf.add(a, c))
Then execute:
python /home/ubuntu/bias_add.py
Execution Result:
3 x 3x2 dimensions. You can also try to modify the source code to see what happens to the output?
Tf.reduce_mean
reduce_mean( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
Function Description:
Calculate tensor input_tensor Average
Parameter list:
| |
required |
type |
description |
| Input_tensor |
Is |
Tensor |
Enter the tensor of the average to be averaged |
| Axis |
Whether |
None, 0, 1 |
None: Global averaging; 0: averaging of each column; 1: Averaging each row |
| Keep_dims |
Whether |
Boolean |
Keep the original dimension, down to 1 |
| Name |
Whether |
String |
Operation name |
| Reduction_indices |
Whether |
None |
is equivalent to axis and is deprecated |
Example code:
You can now create the source file reduce_mean.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/reduce_mean.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npinitial = [[1.,1.],[2.,2.]]x = tf.Variable(initial,dtype=tf.float32)init_op = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init_op) print sess.run(tf.reduce_mean(x)) print sess.run(tf.reduce_mean(x,0)) #Column print sess.run(tf.reduce_mean(x,1)) #row
Then execute:
python /home/ubuntu/reduce_mean.py
Execution Result:
1.5[ 1.5 1.5][ 1. 2.]
You can also try to modify the source code to see what happens to the output?
Tf.squared_difference
squared_difference( x, y, name=None)
Function Description:
Calculate tensor x, y corresponding element squared difference
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| X |
Is |
Tensor |
Is half, float32, Float64, Int32, Int64, Complex64, complex128 one of the types |
| Y |
Is |
Tensor |
Is half, float32, Float64, Int32, Int64, Complex64, complex128 one of the types |
| Name |
Whether |
String |
Operation name |
Example code:
You can now create the source file squared_difference.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/squared_difference.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npinitial_x = [[1.,1.],[2.,2.]]x = tf.Variable(initial_x,dtype=tf.float32)initial_y = [[3.,3.],[4.,4.]]y = tf.Variable(initial_y,dtype=tf.float32)diff = tf.squared_difference(x,y)init_op = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init_op) print sess.run(diff)
Then execute:
python /home/ubuntu/squared_difference.py
Execution Result:
[[ 4. 4.] [ 4. 4.]]
You can also try to modify the source code to see what happens to the output?
Tf.square
square( x, name=None)
Function Description:
Calculates the square of the tensor corresponding element
Parameter list:
| Name of parameter |
must-Choose |
type |
Description |
| X |
Is |
Tensor |
Is half, float32, Float64, Int32, Int64, Complex64, complex128 one of the types |
| Name |
Whether |
String |
Operation name |
Example code:
You can now create the source file square.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/square.py
#!/usr/bin/pythonimport tensorflow as tfimport numpy as npinitial_x = [[1.,1.],[2.,2.]]x = tf.Variable(initial_x,dtype=tf.float32)x2 = tf.square(x)init_op = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init_op) print sess.run(x2)
Then execute:
python /home/ubuntu/square.py
Execution Result:
[[ 1. 1.] [ 4. 4.]]
You can also try to modify the source code to see what happens to the output?
TensorFlow Related class understanding
Task Time: Unknown time
Tf. Variable
__init__( initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None)
Function Description:
Maintain the state information during the execution of the diagram, such as changes in the weight values of the neural network.
Parameter list:
| Name of parameter |
type |
Description |
| Initial_value |
Tensor |
The initial value of the Variable class, which must specify the shape information, or the subsequent validate_shape should be set to False |
| Trainable |
Boolean |
Whether to add variables to collection Graphkeys.trainable_variables (collection is a global store that is not affected by the variable name living space, where it is saved, and is desirable everywhere) |
| Collections |
Graph Collections |
Global storage, default is Graphkeys.global_variables |
| Validate_shape |
Boolean |
Whether to allow Initial_value initialization by an unknown dimension |
| Caching_device |
String |
Indicates which device is used to cache variables |
| Name |
String |
Variable name |
| Dtype |
Dtype |
If it is set, the initialized value will initialize as this type. |
| Expected_shape |
Tensorshape |
If set, then the initial value will be this dimension |
Example code:
You can now create the source file variable.pyin the /home/ubuntu directory, which can be referenced in the following:
Example code:/home/ubuntu/variable.py
#!/usr/bin/pythonimport TensorFlow as Tfinitial = Tf.truncated_normal (shape=[10,10],mean=0,stddev=1) W=tf. Variable (initial) list = [[1.,1.],[2.,2.] X = tf. Variable (list,dtype=tf.float32) init_op = Tf.global_variables_initializer () with TF. Session () as Sess:sess.run (init_op) print ("################## (1) ################") Print Sess.run (W) print ( "################## (2) ################") Print Sess.run (W[:2,:2]) op = w[:2,:2].assign (22.*tf.ones ((2,2))) print ("################### (3) ###############") Print Sess.run (OP) print ("################### (4) ###############") Prin T (W.eval (Sess)) #computes and returns the value of this variable print ("#################### (5) ##############") pr Int (W.eval ()) #Usage with the default session print ("##################### (6) #############") Print W.dtype pri NT Sess.run (w.initial_value) print Sess.run (w.op) Print w.shape print ("################### (7) ###############") Print Sess.run (X)
Then execute:
python /home/ubuntu/Variable.py
Complete
Task Time: Unknown time
Congratulations, you have completed the contents of this experiment
You can do a series of more TensorFlow tutorials:
- TensorFlow-Linear regression
- TensorFlow-based on CNN digital recognition
For more information about TensorFlow, refer to TensorFlow website .
tensorflow-related APIs