[Journal of mathematics, jiali] 247th-Question of 2013 advanced algebra postgraduate exams of South China University of Technology

Source: Internet
Author: User

1 ($ 15' $) set $ \ BBP $ to a number field, $ f (x), g (x) \ In \ BBP [x] $, and $ \ P (g (x) \ geq 1 $. proof: There is a unique polynomial sequence $ f_0 (x), F_1 (x), \ cdots, f_r (x) $, make $ \ P (f_ I (x) <\ P (g (x) $ or $ f_ I (x) = 0 $ for $0 \ Leq I \ Leq r$, and $ \ Bex f (x) = \ sum _ {I = 0} ^ r f_ I (x) G ^ I (X ). \ EEx $

Proof: by division with remainder, $ \ beex \ Bea f (x) & = f_0 (x) + Q_1 (x) g (x), \ quad f_0 (X) \ mbox {suitable for the conditions in the question, and} f_0, Q_1 \ mbox {unique}, \ Q_1 (x) & = f_1 (x) + Q_2 (X) g (x), \ quad F_1 (x) \ mbox {suitable for the conditions in the question, and} F_1, Q_2 \ mbox {unique }, \ cdots \ q _ {R-1} (x) & = F _ {R-1} (x) + f_r (x) g (x ), \ quad F _ {R-1} (x) \ mbox {suitable for the conditions in the question, and} f _ {R-1}, f_r \ mbox {unique }. \ EEA \ eeex $ so $ \ Bex f (x) = \ sum _ {I = 0} ^ r f_ I (x) G ^ I (X ). \ EEx $ recommended by $ \ P (g) \ geq 1 $ \ DPS {r = \ SEZ {\ P (f)/\ P (G )}} $. and by $ \ Bex \ P (f_ig ^ I) <(I + 1) \ P (g) <r \ P (g) \ Leq \ P (f ), \ Quad (0 \ Leq I \ Leq i-1) \ EEx $ \ Bex \ P (f) = \ P (f_rg ^ R) = \ P (f_r) + r \ P (G), \ EEx $ \ Bex \ P (f_r) = \ P (f)-r \ P (g) <\ P (g ). \ EEx $ in this question, we remember $ \ P (0) =-\ infty $.

 

2 ($ 15' $) calculates the rank of the following $ N $: $ \ Bex \ sev {\ BA {CCCC} 1 + A_1 & 1 & \ cdots & 1 \ 1 & 1 + A_2 & \ cdots & 1 \ vdots &\ vdots & \ ddots & \ vdots \ 1 & \ cdots & 1 + a_n \ EA }. \ EEx $

Answer: When all $ a_ I \ NEQ 0 $, $ \ beex \ Bea \ mbox {original format} & =\ sev {\ BA {CCCCC} 1 & 1 & 1 & \ cdots & 1 \ 0 & 1 + A_1 & 1 & \ cdots & 1 \ 0 & 1 & 1 + A_2 & \ cdots & 1 \ vdots & \ ddots & \ vdots \ 0 & 0 & 0 & \ cdots & 1 + a_n \ EA} \\\\\sev {\ba {CCCCC} 1 & 1 & 1 & \ cdots & 1 \-1 & A_1 & 0 & \ cdots & 0 \-1 & 0 & A_2 & \ cdots & 0 \ vdots & \ ddots & \ vdots \-1 & 0 & 0 & \ cdots & a_n \ EA} \\\\=\ sex {1 + \ sum _ {I = 1} ^ n \ frac {1} {a_ I }} \ prod _ {I = 1} ^ n a_ I. \ EEA \ eeex $ when a certain $ a_ I = 0 $, for example, $ A_1 = 0 $, $ \ Bex \ mbox {original format} = A_2 \ cdots a_n. \ EEx $ in short, original formula $ \ DPS {= \ prod _ {I = 1} ^ n a_ I + \ sum _ {I = 1} ^ n \ prod _ {j = 1, J \ NEQ I} ^ n a_j} $.

 

3 ($ 15' $) set $ N $ level real symmetric matrix $ A = (A _ {IJ}) $ to positive definite, $ B _1, \ cdots, B _n $ is any $ N $ non-zero real number. It proves that the matrix $ B = (A _ {IJ} B _ib_j) $ is also positive.

Proof: For $ \ forall \ x \ In \ BBR ^ N $, $ \ beex \ Bea \ sum _ {I, j} A _ {IJ} B _ib_jx_ix_j & =\ sum _ {I, j} A _ {IJ} (B _ix_ I) (B _jx_j) \\&=\ sum _ {I, j} A _ {IJ} y_iy_j \ Quad (y_ I = B _ix_ I) \ & \ geq 0. \ EEA \ eeex $ is equivalent to $ B $ semi-definite. it is determined by $ x \ NEQ 0 \ rA Y \ NEQ 0 $ $ B $ Dingding.

 

4 ($ 25') $ when discussing the value of the parameter $ A, B $, linear Equations $ \ Bex \ sedd {\ BA {rrrrrrrrl} X_1 & + & X_2 &-& 2x_3 & + & 3x_4 & = & 0, \ 2x & + & X_2 &-& 6x_3 & + & 4x_4 & = &-1, \ 3x_1 & + & 2x_2 & + & ax_3 & + & 7x_4 & = &-1, \ X_1 &-& X_2 &-& 6x_3 &-& x_4 & = & B \ EA} \ EEx $ solutions? No solution? When there is a solution, find the general solution.

Answer: by $ \ beex \ BEA (A, B) & =\ sex {\ BA {CCCCC} 1 & 1 &-2 & 3 & 0 \ 2 & 1 &-6 & 4 &-1 \ 3 & 2 & & 7 &-1 \ 1 &-1 &-6 &-1 & B \ EA} \ & \ RRA \ sex {\ BA {CCCCC} 1 & 1 &- 2 & 3 & 0 \ 0 &-1 &-2 &-2 &-1 \ 0 &-1 & A + 6 &-2 &-1 \ 0 & -2 &-4 &-4 & B \ EA} \ & \ RRA \ sex {\ BA {CCCCC} 1 & 1 &-2 & 3 & 0 \ 0 & 1 & 2 & 2 & 1 \ 0 & 0 & A + 8 & 0 & 0 \ 0 & 0 & 0 & B + 2 \ EA} \ EEA \ eeex $ Zhi

(1) When $ A \ NEQ-8, B \ NEQ-2 $, the original equation has no solution;

(2) When $ A =-8, B =-2 $) \ RRA \ sex {\ BA {CCCCC} 1 & 0 &-4 & 1 &-1 \ 0 & 1 & 2 & 1 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ EA} \ EEx $ the solution to the original equation is $ \ Bex \ sex {\ BA {CCCCC}-1 \ 1 \ 0 \ 0 \ EA} + k \ sex {\ BA {CCCCC} 4 \-2 \ 1 \ 0 \ EA} + L \ sex {\ BA {CCCCC}-1 \-2 \ 0 \ 1 \ EA }, \ Quad (\ forall \ K, L ). \ EEx $

 

5 ($ 20' $) is a linear transformation of $ N $ Dimension Linear Space $ V $.

(1) proof: $ V $ any sub-space containing the value range $ \ SCRA v $ W $ is $ \ SCRA $-sub-space;

(2) In the kernel $ \ SCRA ^ {-1} (0) $, obtain a group of bases $ \ alpha_1, \ cdots, \ alpha_m $, and expand it to a group of $ \ Bex \ alpha_1, \ cdots, \ alpha_m, \ Alpha _ {m + 1}, \ cdots, \ alpha_n, \ EEx $ Q: What is the shape of the matrix $ \ SCRA $ under this group?

Proof:

(1) conclusion is drawn from $ \ Bex \ Alpha \ In w \ Ra \ SCRA \ Alpha \ In \ scra v \ subset w \ EEx $.

(2) $ \ beex \ Bea \ quad \ SCRA (\ alpha_1, \ cdots, \ alpha_n) = (\ alpha_1, \ cdots, \ alpha_n) \ sex {\ BA {cccccc} 0 & \ cdots & 0 & A _ {1, m + 1} & \ cdots & A _ {1N} \ vdots & \ vdots \ 0 & \ cdots & 0 & A _ {M, m + 1} & \ cdots & A _ {Mn} \ 0 & \ cdots & 0 & A _ {m + 1, m + 1} & \ cdots & A _ {m + 1, N }\\\ vdots & \ vdots \ 0 & \ cdots & 0 & A _ {n, m + 1} & \ cdots & A _ {NN} \ EA }. \ EEA \ eeex $

 

6 ($ 25' $) set $ V $ to $4 $ Dimension Euclidean space, $ \ ve_1, \ cdots, \ ve_4 $ to a set of standard orthogonal bases for $ V $. order $ \ Bex \ alpha_1 = \ ve_2 + \ ve_3 + \ ve_4, \ alpha_2 = \ ve_1 + \ ve_3 + \ ve_4, \\\ alpha_3 = \ ve_1 + \ ve_2 + \ ve_4, \\\ alpha_4 = \ ve_1 + \ ve_2 + \ ve_3. \ EEx $

(1) convert $ \ alpha_1, \ alpha_2, \ alpha_3 and \ alpha_4 into vector groups in Orthogonal units $ \ beta_1, \ beta_2, \ beta_3, \ beta_4 $;

(2) Calculate the transition matrix from base $ \ ve_1, \ ve_2, \ ve_3, \ ve_4 $ to base $ \ beta_1, \ beta_2, \ beta_3, \ beta_4 $;

(3) Orders $ W_1 = L (\ alpha_1, \ alpha_2), U_1 = W_1 ^ \ perp $; $ W_2 = L (\ alpha_2, \ alpha_4 ), u_2 = W_2 ^ \ perp $. use the base vector $ \ ve_1, \ ve_2, \ ve_3, \ ve_4 $ to represent the sub-space $ U_1 + u_2 $ and determine its dimension.

Answer:

(1) $ \ beex \ Bea \ beta_1 & =\ frac {\ alpha_1 }{|\ alpha_1 |}=\ frac {1 }{\ SQRT {3 }} (\ ve_2 + \ ve_3 + \ ve_4 ), \\\ beta_2 <=\ frac {\ alpha_2-(\ alpha_2, \ beta_1) \ beta_1 }{|\ alpha_2-(\ alpha_2, \ beta_1) \ beta_1 | }=\ frac {1} {\ SQRT {15} (3 \ ve_1-2 \ ve_2 + \ ve_3 + \ ve_4 ), \\\ beta_3 <=\ frac {\ alpha_3-(\ alpha_3, \ beta_1) \ beta_1-(\ alpha_3, \ beta_2) \ beta_2 }{| \ alpha_3-(\ alpha_3, \ beta_1) \ beta_1-(\ alpha_3, \ beta_2) \ beta_2 |}=\ frac {1 }{\ SQRT {35 }}( 3 \ ve_1 + 3 \ ve_2-4 \ ve_3 + \ ve_4 ), \\\ beta_4 <=\ frac {\ alpha_4-(\ alpha_4, \ beta_1) \ beta_1-(\ alpha_4, \ beta_2) \ beta_2-(\ alpha_4, \ beta_3) \ beta_3 }{| \ alpha_4-(\ alpha_4, \ beta_1) \ beta_1-(\ alpha_4, \ beta_2) \ beta_2-(\ alpha_4, \ beta_3) \ beta_3 |}=\ frac {1} {\ SQRT {7} (\ ve_1 + \ ve_2 + \ ve_3-2 \ ve_4 ). \ EEA \ eeex $

(2) $ \ BEX (\ beta_1, \ beta_2, \ beta_3, \ beta_4) = (\ ve_1, \ ve_2, \ ve_3, \ ve_4) \ sex {\ BA {CCCC} 0 & \ frac {3} {\ SQRT {15 }}& \ frac {3} {\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}\\\ frac {1 }{\ SQRT {3 }}& \ frac {-2 }{\ SQRT {15 }}& \ frac {3 }{\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}\\\ frac {1 }{\ SQRT {3 }}& \ frac {1 }{\ SQRT {15 }}& \ frac {-4 }{\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}\\ frac {1 }{\ SQRT {3 }}& \ frac {1 }{\ SQRT {15 }}& \ frac {1 }{\ SQRT {35 }}& \ frac {-2 }{\ SQRT {7 }}\ EA }. \ EEx $

(2) by $ \ Bex W_1 = L (\ alpha_1, \ alpha_2) = L (\ beta_1, \ beta_2) \ EEx $ $ \ Bex U_1 = W_1 ^ \ perp = L (\ beta_3, \ beta_4 ). \ EEx $ again by $ \ beex \ Bea \ gamma_2 & =\ frac {\ alpha_2 }{|\ alpha_2 |}=\ frac {1 }{\ SQRT {3}} (\ ve_1 + \ ve_3 + \ ve_4 ), \ gamma_4 & =\ frac {\ alpha_4-(\ alpha_4, \ gamma_2) \ gamma_2 }{| \ alpha_4-(\ alpha_4, \ gamma_2) \ gamma_2 |}=\ frac {1 }{\ SQRT {15 }}( \ ve_1 + 3 \ ve_2 + \ ve_3-2 \ ve_4 ), \ gamma_1 & =\ frac {\ alpha_1-(\ alpha_1, \ gamma_2) \ gamma_2-(\ alpha_1, \ gamma_4) \ gamma_4 }{| \ alpha_1-(\ alpha_1, \ gamma_2) \ gamma_2-(\ alpha_1, \ gamma_4) \ gamma_4 |}=\ frac {1 }{\ SQRT {35 }}(-4 \ ve_1 + 3 \ ve_2 + \ ve_3 + 3 \ ve_4 ), \ gamma_3 & =\ frac {\ alpha_3-(\ alpha_3, \ gamma_2) \ gamma_2-(\ alpha_3, \ gamma_4) \ gamma_4-(\ alpha_3, \ gamma_1) \ gamma_1 }{| \ alpha_3-(\ alpha_3, \ gamma_2) \ gamma_2-(\ alpha_3, \ gamma_4) \ gamma_4-(\ alpha_3, \ gamma_1) \ gamma_1 |}=\ frac {1} {\ SQRT {7} (\ ve_1 + \ ve_2-2 \ ve_3 + \ ve_4 ). \ EEA \ eeex $ zhi$ $ \ Bex W_2 = L (\ alpha_2, \ alpha_4) = L (\ gamma_2, \ gamma_4 ), \ quad u_2 = W_2 ^ \ perp = L (\ gamma_1, \ gamma_3 ). \ EEx $ \ Bex U_1 + u_2 = L (\ beta_3, \ beta_4, \ gamma_1, \ gamma_3 ). \ EEx $ because $ \ BEX (\ beta_3, \ beta_4, \ gamma_1, \ gamma_3) = (\ ve_1, \ ve_2, \ ve_3, \ ve_4) \ sex {\ BA {CCCC} \ frac {3} {\ SQRT {35 }}& \ frac {1} {\ SQRT {7 }}& \ frac {-4} {\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}\\ frac {3 }{\ SQRT {35 }}& \ frac {1} {\ SQRT {7 }}& \ frac {3 }{\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}\\ frac {-4 }{\ SQRT {35 }}& \ frac {1 }{\ SQRT {7 }}& \ frac {1 }{\ SQRT {35 }}& \ frac {-2 }{\ SQRT {7 }}\\\ frac {1 }{\ SQRT {35 }}& \ frac {-2 }{\ SQRT {7 }}& \ frac {3} {\ SQRT {35 }}& \ frac {1} {\ SQRT {7 }}\ EA} \ EEx $ and (column transformation) $ \ Bex \ sex {\ BA {CCCC} 3 & 1 &-4 & 1 \ 3 & 3 & 1 \-4 & 1 & 1 &-2 \ 1 &-2 & 3 & 1 \ EA} \ RRA \ sex {\ BA {CCCC} 1 & \ & 1 & \ & 1 &\ \-1 &-1 & \ EA} \ EEx $ Zhi $ \ Bex U_1 + u_2 = L (\ ve_1, \ ve_2, \ ve_3), \ quad \ dim (U_1 + u_2) = 3. \ EEx $

 

7 ($ 20' $) set $ N $ square matrix $ A $ meet $ A ^ 2 = 2a $ and $ \ rank (A) = r$.

(1) proof: $ \ rank (A-2E) = N-r$;

(2) proof: $ A $ is similar to diagonal arrays;

(3) determine the determinant $ | A-E | $ value.

Answer:

(1) by $ A (A-2E) = 0 $ Zhi $ \ rank (A-2E) \ Leq N-r$; and by $-A + (A-2E) =-2E $ zhi$ \ rank (A-2E) \ geq N-r$.

(2) set the basic solution for $ AX = 0 $ to $ \ alpha_1, \ cdots, \ Alpha _ {n-r }$, $ (A-2E) the basic solution for x = 0 $ is $ \ Alpha _ {n-R + 1}, \ cdots, \ alpha_n $, it is easy to know that $ \ sed {\ alpha_ I }_{ I = 1} ^ N $ is a group of bases and $ \ Bex a (\ alpha_1, \ cdots, \ alpha_n) = (\ alpha_1, \ cdots, \ alpha_n) \ sex {\ BA {cccccc} 0 & \ ddots & \ & 0 & \ & 2 &&\ \ & \ ddots & \\& & 2 \ EA }. \ EEx $

(3) by $ \ BEX (A-E) (\ alpha_1, \ cdots, \ alpha_n) = (\ alpha_1, \ cdots, \ alpha_n) \ sex {\ BA {cccccc}-1 & \\& \ ddots & \\& &-1 & \\& & 1 & & \& & \ ddots & \\& & 1 \ EA} \ EEx $ $ | A-E | = (-1) ^ {n-r} $.

 

8 ($ 15' $) set $ A $ to the $ N $ square matrix on the number field $ \ BBP $, $ f (x), g (x) $ is the polynomial on the number field $ \ BBP $, and $ (f (x), g (x) = 1 $. for $ h (x) = f (x) g (x) $, use $ v_1, V_2, and V $ to represent the $ N $ homogeneous linear equations $ F () X = 0, g (a) x = 0, H (a) x = 0 $ solution space, here $ x = (x_1, \ cdots, X_n) ^ t $. proof: $ v = v_1 \ oplus V_2 $.

Proof: set by question, $ \ Bex UF + VG = 1. \ EEx $ for $ \ forall \ Alpha \ In V $, $ \ Bex \ alpha = U (a) f (a) \ Alpha + V () G (a) \ Alpha \ in V_2 + v_1. \ EEx $ so $ v = v_1 + V_2 $. and by $ \ Bex \ beta \ In v_1 \ cap V_2 \ Ra \ Beta = u (a) f (a) \ Beta + V (a) g () \ Beta = 0 \ EEx $ Zhi $ v = v_1 \ oplus V_2 $.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.