Multiplication of large numbers and multiplication of large numbers

Source: Internet
Author: User

Multiplication of large numbers and multiplication of large numbers

Address: http://blog.csdn.net/wangyuling1234567890/article/details/39278097


# Include <stdlib. h> # include <stdio. h> # include <string. h> void multiply (char * a, char * B, char * c) {int sa = 0; int sb = 0; int I, j; int * result = NULL; if (NULL = a) | (NULL = B) | (NULL = c) {return;} sa = strlen (); sb = strlen (B); result = (int *) malloc (sizeof (int) * (sa + sb )); // clears the array storing results // memset (result, 0, sizeof (result); for (I = 0; I <sa + sb; I ++) {result [I] = 0 ;}for (I = 0; I <sa; I ++) {for (j = 0; j <sb; j ++) {result [I + j] + = (* (a + sa-i-1)-'0') * (B + sb-j-1)-'0 ');}} // carry for (I = 0; I <sa + sb; I ++) {result [I + 1] + = result [I]/10; result [I] % = 10;} // value of the output parameter I = sa + SB-1; if (result [I] = 0) {I --;} (; i> = 0; I --) {* c ++ = result [I] + '0';} * c = '\ 0'; free (result); return ;} void main () {char * a = "52364"; char * B = "68746"; char c [100] = {0}; multiply (a, B, c ); return ;}



Fast Algorithm for multiplication of large numbers

The fastest Algorithm for multiplication of large numbers is the fast Fourier transformation method, which is one, but not written by myself.
# Include <iostream>
# Include <cmath>
# Include <complex>
# Include <cstring>
Using namespace std;

Const double PI = acos (-1 );
Typedef complex <double> cp;
Typedef long int64;

Const int N = 1 <16;
Int64 a [N], B [N], c [N <1];

Void bit_reverse_copy (cp a [], int n, cp B [])
{
Int I, j, k, u, m;
For (u = 1, m = 0; u <n; u <= 1, ++ m );
For (I = 0; I <n; ++ I)
{
J = I; k = 0;
For (u = 0; u <m; ++ u, j> = 1)
K = (k <1) | (j & 1 );
B [k] = a [I];
}
}

Void FFT (cp _ x [], int n, bool flag)
{
Static cp x [N <1];
Bit_reverse_copy (_ x, n, x );
Int I, j, k, kk, p, m;
For (I = 1, m = 0; I <n; I <= 1, ++ m );
Double alpha = 2 * PI;
If (flag) alpha =-alpha;
For (I = 0, k = 2; I <m; ++ I, k <= 1)
{
Cp wn = cp (cos (alpha/k), sin (alpha/k ));
For (j = 0; j <n; j + = k)
{
Cp w = 1, u, t;
Kk = k> 1;
For (p = 0; p <kk; ++ p)
{
T = w * x [j + p + kk];
U = x [j + p];
X [j + p] = u + t;
X [j + p + kk] = u-t;
W * = wn;
}
}
}
Memcpy (_ x, x, sizeof (cp) * n );
}

Void polynomial_multiply (int ...... remaining full text>

C language, big number multiplication problem, urgent,

# Include <stdio. h>
# Include <string. h>
# Define N 80
Void mul (int * x, int * y, int * z)
{
Int I, j;
For (I = 0; I <2 * N; I ++)
Z [I] = 0;
For (I = 0; I <N; I ++)
For (j = 0; j <N; j ++)
Z [I + j] + = x [I] * y [j];
For (I = 0; I <2 * N-1; I ++)
{
Z [I + 1] + = z [I]/10;
Z [I] % = 10;
}
}
Void rev (char * s, int * n)
{
Int I = 0, j = strlen (s)-1;
While (j> = 0)
N [I ++] = s [j --]-'0 ';
}
Void iniXY (int * x, int * y)
{
Int I;
For (I = 0; I <N; I ++)
X [I] = y [I] = 0;
}
Int main ()
{
Char a [N], B [N];
Int x [N], y [N], z [2 * N];
Int I = 2 * N-1;
Gets ();
Gets (B );
IniXY (x, y );
Rev (a, x );
Rev (B, y );
Mul (x, y, z );
While (! Z [I --])
;
I ++;
While (I> = 0)
Printf ("% d", z [I --]);
Printf ("\ n ");
Return 0;
}

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.