05th sets of simulated exam for Mathematics Competition Training of Gannan Normal University

Source: Internet
Author: User

1. (1) set $ f (x) $ to be bounded on $ [0, 1] $ and continuous at $ x = 1 $, test the limit $ \ DPS {\ vlm {n} n \ int_0 ^ 1 x ^ {n-1} f (x) \ RD x} $.

(2) calculate the following formula $ \ Bex \ int_0 ^ 1 \ cfrac {x ^ {n-1 }}{ 1 + x} \ RD x =\cfrac {A} {n} + \ cfrac {B} {n ^ 2} + O \ sex {\ cfrac {1} {n ^ 2 }}\ Quad (n \ To \ infty) the undetermined constants in \ EEx $ A, B $.

Answer: (1) from $ F $ continuous knowledge at $ x = 1 $ \ Bex \ forall \ ve> 0, \ exists \ Delta \ In (0, 1), \ st 1-\ Delta \ Leq x \ Leq 1 \ rA | f (x)-f (1) | <\ ve. \ EEx $ set $ | f (x) | \ Leq M, \ forall \ x \ in [0, 1] $, then $ \ beex \ Bea \ sev {n \ int_0 ^ 1 x ^ {n-1} f (x) \ rd x-F (1 )} & =\ sev {\ int_0 ^ 1 NX ^ {n-1} [F (x)-f (1)] \ RD x }\\\& \ Leq \ int_0 ^ {1-\ Delta} NX ^ {n-1} | f (x)-f (0) | \ RD x + \ int _ {1-\ Delta} ^ 1 NX ^ {n-1} | f (x)-f (0) | \ RD x \ & \ leq2m (1-\ delta) ^ N + \ ve [1-(1-\ delta) ^ N] \\& <2 m (1-\ delta) ^ N + \ ve. \ EEA \ eeex $ make $ n \ To \ infty $ \ Bex \ VLS {n} \ sev {n \ int_0 ^ 1 x ^ {n-1} f (x) \ rd x-F (1)} \ Leq \ ve. \ EEx $ then make $ \ ve \ to 0 ^ + $ a conclusion. (2) $ \ Bex a = \ vlm {n} n \ int_0 ^ 1 \ cfrac {x ^ {n-1} {1 + x} \ RD x = \ cfrac {1 }{ 2 }, \ EEx $ \ beex \ Bea B & =\ vlm {n} \ SEZ {n ^ 2 \ int_0 ^ 1 \ cfrac {x ^ {n-1} {1 + x} \ rd x-\ cfrac {n} {2 }\\\\&=\ vlm {n} n \ int_0 ^ 1 NX ^ {n-1} \ sex {\ cfrac {1} {1 + x}-\ cfrac {1} {2 }}\ RD x \ & =\ vlm {n} n \ int_0 ^ 1 \ sex {\ cfrac {1} {1 + x}-\ cfrac {1} {2 }}\ RD x ^ n \\\&=\ vlm {n} n \ int_0 ^ 1 \ cfrac {x ^ n} {(1 + x) ^ 2} \ RD x \\\&=\ vlm {n} \ cfrac {n} {n + 1} \ int_0 ^ 1 \ cfrac {(n + 1) x ^ n} {(1 + x) ^ 2} \ RD x \\\\\cfrac {1} {4 }. \ EEA \ eeex $

 

 

2. set $ f \ in C [0, + \ infty) $, $ A $ as a real number, the limited limit $ \ Bex \ vlm {x} \ SEZ {f (x) + A \ int_0 ^ x F (t) \ RD t} exists }. \ EEx $ proof: $ \ DPS {\ vlm {x} f (x)} $ exists and is zero.

Proof: note $ \ Bex f (x) = E ^ {ax} \ int_0 ^ x F (t) \ RD t, \ EEx $ \ Bex f '(x) = E ^ {ax} \ SEZ {f (x) + A \ int_0 ^ x F (t) \ RD t}, \ EEx $ \ Bex \ vlm {x} \ cfrac {f' (x )} {AE ^ {ax }}=\ cfrac {1} {A} \ vlm {x} \ SEZ {f (x) + A \ int_0 ^ x F (t) \ RD t} \ EEx $ exists. by the l' hosprac law, $ \ Bex \ vlm {x} \ int_0 ^ x F (t) \ rd t = \ vlm {x} \ cfrac {f (x )} {e ^ {ax }}=\ vlm {x} \ cfrac {f' (x)} {AE ^ {ax} \ EEx $. therefore, $ \ Bex \ vlm {x} f (x) = \ vlm {x} \ SEZ {f (x) + A \ int_0 ^ x F (t) \ RD t}-A \ vlm {x} \ int_0 ^ x F (t) \ RD t \ EEx $ exists. it is known that $ \ Bex \ vlm {x} \ int_0 ^ x F (t) \ RD t \ EEx $ F (+ \ infty) = 0 $ (otherwise, $ F (+ \ infty) = A \ NEQ 0 $. set $ a> 0 $, and $ \ Bex \ exists \ x> 0, \ st x \ geq x \ rA f (x) \ geq \ cfrac {A} {2}, \ EEx $ \ beex \ Bea \ int_0 ^ x F (t) \ rd t & = \ int_0 ^ XF (t) \ rd t + \ int_x ^ x F (t) \ RD t \ Quad (x \ geq X) \\& \ geq \ int_0 ^ XF (t) \ rd t + \ cfrac {A} {2} (X-x) \ To \ infty \ Quad (x \ To \ infty ). \ EEA \ eeex $ this is a conflict ).

 

 

3. (1) set $ n \ In \ BBN ^ + $, calculate points $ \ DPS {\ int_0 ^ {\ PI/2} \ cfrac {\ sin NX} {\ SiN x} \ RD x }. $

(2) calculate $ \ DPS {\ int_0 ^ {\ frac {\ PI} {2 }}\ cfrac {x ^ 2} {\ sin ^ 2x} \ RD x} $.

Answer: (1) by $ \ beex \ Bea 2 \ SiN x \ cdot \ cfrac {1} {2} & = \ SiN X, \ 2 \ SiN x \ cdot \ cos 2x & =\ sin 3x-\ SiN x, \ 2 \ SiN x \ cdot \ cos 4x & =\ sin 5x-\ sin 3x, \\\ cdots & =\ cdots, \ 2 \ SiN x \ cdot \ cos 2nx & =\ sin (2n + 1) x-\ sin (2n-1) X \ EEA \ eeex $ Zhi $ \ Bex 2 \ SiN x \ sex {\ cfrac {1} {2} + \ sum _ {k = 1} ^ n \ cos 2kx }=\ sin (2n + 1) x. \ EEx $ then $ \ Bex \ int_0 ^ {\ PI/2} \ cfrac {\ sin (2n + 1) x} {\ SiN x} \ RD x = \ int_0 ^ {\ PI/2} \ sex {1 + 2 \ sum _ {k = 1} ^ n \ cos 2kx} \ RD x = \ cfrac {\ PI} {2 }. \ EEx $ and then $ \ beex \ Bea 2 \ SiN x \ Cos x & = \ sin 2x, \ 2 \ SiN x \ cos 3x & = \ sin 4x-\ sin 2x, \ 2 \ SiN x \ cos 5x & = \ sin 6x-\ sin 4x, \\\ cdots <=\ cdots, \\ 2 \ SiN x \ cos (2n-1) x <=\ sin 2nx-\ sin (2N-2) X \ EEA \ eeex $ Zhi $ \ Bex 2 \ SiN x \ sum _ {k = 1} ^ n \ cos (2k-1) x = \ sin 2nx. \ EEx $ \ Bex \ int_0 ^ {\ PI/2} \ cfrac {\ sin 2nx} {\ SiN x} \ RD x = 2 \ int_0 ^ {\ PI/2} \ sum _ {k = 1} ^ n \ cos (2k-1) X \ RD x = 2 \ sum _ {k = 1} ^ n \ cfrac {(-1) ^ {k-1} {2k-1 }. \ EEx $ (2) $ \ beex \ Bea \ int_0 ^ {\ frac {\ PI} {2 }}\ frac {x ^ 2} {\ sin ^ 2x} \ rd x & = -\ int_0 ^ {\ frac {\ PI} {2} x ^ 2 \ RD \ cot x \ & = 2 \ int_0 ^ {\ frac {\ PI} {2 }} X \ cot x \ RD x \ & = 2 \ int_0 ^ {\ frac {\ PI} {2} X \ RD \ ln \ SiN x \ & =-2 \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x \ rd x. \ EEA \ eeex $ find $ \ beex \ Bea \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x \ rd x & =\ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ Cos x \ RD x \ quad \ sex {\ frac {\ PI} {2}-x \ leftrightsquigarrow x} \ & =\ frac {1} {2} \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x + \ ln \ Cos x \ RD x \ & =\ frac {1} {2} \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ sin 2x \ rd x-\ frac {\ pi} {4} \ ln 2 \ & =\ frac {1} {4} \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ sin 2x \ RD x-\ frac {\ PI} {4} \ ln 2 \ quad \ sex {2x \ leftrightsquigarrow x }\\\\=\ frac {1} {4} \ SEZ {\ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x \ RD x + \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ cos X \ RD x}-\ frac {\ PI} {4} \ ln 2 \ quad \ sex {X-\ frac {\ PI} {2} \ leftrightsquigarrow x }\\ & =\ frac {1} {2} \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x-\ frac {\ PI} {4 }\ ln 2. \ EEA \ eeex $ then $ \ Bex \ int_0 ^ {\ frac {\ PI} {2 }}\ ln \ SiN x \ RD x =-\ frac {\ pi} {2} \ ln 2, \ quad \ int_0 ^ {\ frac {\ PI} {2 }}\ frac {x ^ 2} {\ sin ^ 2x} \ RD x = \ pi \ ln 2. \ EEx $

 

 

4. set $ f (x) $ to the real-value function on $ \ BBR $. If $ \ Bex f (x) \ Leq \ liminf _ {Y \ to x} f (y), \ EEx $ is called $ f (x) $ in the lower half of $ x $; if $ f (x) $ is semi-consecutive at any $ x \ In \ BBR $, $ f (x) $ is semi-consecutive at $ \ BBR $; if $-f (x) $ is semi-continuous, it is called $ f (x) $ semi-continuous. test certificate:

(1) $ f (x) $ in the lower half of $ x $, if and only if $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ st Y \ In U (x, \ delta) \ rA f (y) <f (x) + \ ve. \ EEx $

(2) $ F $ continuous at $ x $ when and only when $ f (x) $ is in the upper half of $ x $ consecutive and lower half consecutive.

(3) If $ F $ has lower bound and lower half continuity, define $ \ Bex f_k (x) =\inf _ {Y \ In \ BBR} \ sed {f (y) + k | x-y |}, \ quad k \ In \ BBN, \ EEx $ then $ f_k (x) $ is a continuous function, $ F_1 (X) \ Leq F_2 (x) \ Leq \ cdots \ Leq f_k (x) \ Leq \ cdots $, and $ \ Bex \ lim _ {k \ To \ infty} f_k (x) = f (x), \ quad \ forall \ x \ In \ BBR. \ EEx $ [This indicates that bounded semi-continuous functions can be approached by continuous function increments]

Proof: (1) $ \ rA $: by $ \ Bex f (x) = \ liminf _ {Y \ to x} f (y) = \ sup _ {\ Delta> 0} \ INF _ {Y \ in u (x, \ delta)} f (y) \ EEx $ and upper-validation definition $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ ST \ INF _ {Y \ in u (x, \ delta)} f (y)> F (x)-\ ve. \ EEx $ \ la $: If $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ INF _ {Y \ in u (x, \ delta)} f (y)> F (x)-\ ve, \ EEx $ \ Bex \ liminf _ {Y \ to x} f (y) = \ sup _ {\ Delta> 0} \ INF _ {Y \ in u (x, \ delta)} f (y) & \ geq f (x)-\ ve. \ EEx $ order $ \ ve \ to 0 ^ + $ \ DPS {\ liminf _ {Y \ to x} f (y) \ geq f (x )} $. in addition, $ \ Bex \ INF _ {Y \ in u (x, \ delta)} f (y) \ Leq f (x) \ Ra \ liminf _ {Y \ to x} f (y) = \ sup _ {\ Delta> 0} \ INF _ {Y \ in u (x, \ delta )} f (y) \ Leq f (x ). \ EEx $ (2) known by (1) $ f (x) $ in the upper half of $ x $ \ LRA $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ st Y \ In U (x, \ delta) \ rA f (y) <f (x) + \ ve. \ EEx $ has a conclusion. (3) at $ \ Bex f (y) + k | x-y | \ Leq f (y) + k | X-z | + k | Z-y | \ EEx $ for the lower bounds of $ Y \ In \ BBR $, $ \ Bex f_k (X) \ Leq f_k (z) + k | X-z |. \ EEx $ change $ X, Z $. We found $ \ Bex f_k (z) \ Leq f_k (x) + k | Z-x |. \ EEx $ \ Bex | f_k (x)-f_k (z) | \ Leq k | X-z |. \ EEx $ so, $ f_k (x) $ continuous. in addition, it is clear that $ \ Bex F_1 (x) \ Leq F_2 (x) \ Leq \ cdots \ Leq F _ (x) \ Leq \ cdots, \ quad \ forall \ x \ In \ BBR. \ EEx $ forward certificate $ \ DPS {\ vlm {k} f_k (x) = f (x)} $. on the one hand, by $ \ beex \ Bea f_k (x) & =\ INF _ {Y \ In \ BBR} \ sed {f (y) + k | x-y | }\\& \ Leq f (x) \ quad \ sex {\ mbox {Get} y = x} \ EEA \ eeex $ zhi$ \ DPS {\ vlm {k} f_k (X) \ Leq f (x)} $. on the other hand, from $ F $ semi-continuous, $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ st Y \ In U (X, \ delta) \ rA f (y)> F (x)-\ ve. \ EEx $ set $ f (x) \ geq M, \ forall \ x $, then $ \ beex \ Bea Y \ In U (x, \ delta) & \ rA f (y) + k | x-y | \ geq f (y)> F (x)-\ ve; \ Y \ not \ In U (X, \ delta) & \ rA f (y) + k | x-y | \ geq m + k \ Delta> F (x) -\ ve \ quad \ sex {\ mbox {as long as} k> \ cfrac {-M + f (x)-\ ve} {\ Delta }}. \ EEA \ eeex $ when $ k> \ cfrac {-M + f (x)-\ ve} {\ Delta} $, $ \ beex \ Bea f_k (x) & =\ INF _ {Y \ In \ BBR} \ sed {f (y) + k | x-y |} \ geq f (x)-\ ve; \ vlm {k} f_k (x) & \ geq f (x)-\ ve. \ EEA \ eeex $ make $ \ ve \ to 0 ^ + $ \ DPS {\ vlm {k} f_k (x) \ geq f (x)} $.

 

 

5. set $ A_1 = B, A_2 = C $, at $ n \ geq 3 $, defined by $ \ DPS {a_n = \ frac {A _ {n-1} + A _ {N-2} {2} $. test Certificate: $ \ DPS {\ lim _ {n \ To \ infty} a_n} $ exists and asks for it.

Answer: $ \ beex \ Bea a _ {n + 1}-a_n & =-\ frac {1} {2} (a_n-a _ {n-1 }) \ & =\ cdots \ & =\ sex {-\ frac {1} {2 }}^ {n-1} (a_2-a_1) \\&=\ sex {-\ frac {1} {2 }}^ {n-1} (C-B ), \ a_n & = \ sum _ {k = 1} ^ {n-1} (A _ {k + 1}-A_k) + a_1 \ & =\ sum _ {k = 1} ^ {n-1} \ sex {-\ frac {1} {2} ^ {k-1} (C-B) + B \ & = (C-B) \ frac {1-\ sex {-\ frac {1} {2 }}^ {n-1 }}{ 1-\ sex {-\ frac {1} {2 }}} + B \\\\\ cfrac {2 (C-B )} {3} + B =\cfrac {2C + B} {3}, \ Quad (n \ To \ infty ). \ EEA \ eeex $

 

 

6. set $ A_1> B _1> 0 $, $ \ DPS {A _ {n + 1 }=\ frac {2a_nb_n} {a_n + B _n }, \ B _ {n + 1 }=\ SQRT {A _ {n + 1} B _n}, \ n \ In \ BBN _ +} $. proof: $ \ sed {a_n} $ and $ \ sed {B _n} $ converge to the same limit.

Proof: by $ \ Bex \ frac {A _ {n + 1 }}{ a_n }=\ frac {2b_n} {a_n + B _n }, \ quad \ frac {A _ {n + 1 }}{ B _n }=\ frac {2a_n} {a_n + B _n }, \ quad \ frac {A _ {n + 1 }}{ B _ {n + 1 }}=\ SQRT {\ frac {A _ {n + 1 }}{ B _n} }, \ quad \ frac {B _ {n + 1 }}{ B _n }=\ SQRT {\ frac {A _ {n + 1 }}{ B _n }}, \ quad \ EEx $ mathematical induction knowledge $ \ Bex B _1 \ Leq B _2 \ Leq \ cdots \ Leq B _n \ Leq \ cdots \ Leq a_n \ Leq \ cdots \ Leq A_2 \ leq A_1. \ EEx $ this indicates that $ \ DPS {\ lim _ {n \ To \ infty} a_n, \ lim _ {n \ To \ infty} B _n} $ both exist. in $ B _ {n + 1 }=\ SQRT {A _ {n + 1} B _n} $, the limit between $ n \ To \ infty $ is equal.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.