Data manipulation in Python (module 6)

Source: Internet
Author: User

1. Pandas Plotting

ImportMatplotlib.pyplot as PltImportNumPy as NPImportPandas as PD%matplotlib Notebookplt.style.use ("Seaborn-colorblind") Np.random.seed (123)#Cumsum:add value_of_i + value_of_i+1 = value_of_i+2DF = PD. DataFrame ({'A': Np.random.randn (365). Cumsum (0),'B': Np.random.randn (365). Cumsum (0) + 20,                   'C': Np.random.randn (365). Cumsum (0)-20}, Index=pd.date_range ('1/1/2017', periods=365))#Create a scatter plot of columns ' a ' and ' C ', with changing color (c) and size (s) based on column ' B 'Df.plot.scatter ('A','C', c='B', s=df['B'], colormap='viridis')#Df.plot.box ();#df.plot.hist (alpha=0.7);#Df.plot.kde ();
#pd. Tools.plotting.scatter_matrix (Iris); Create Scater plots between the different variables and
#histograms aloing the diagonals to see the obvious patter

#pd. Tools.plotting.parallel_coordinates (Iris, ' Name ');
#visualizing high dimensional multivariate data, each variable in the data set corresponds to an equally spaced parallel V Ertical Line

Output:

2. Seaborn

ImportNumPy as NPImportPandas as PDImportMatplotlib.pyplot as PltImportSeaborn as SNS%matplotlib Notebooknp.random.seed (1234) V1= PD. Series (Np.random.normal (0,10,1000), name='v1') V2= PD. Series (2*v1 + np.random.normal (60,15,1000), name='v2')#plot a kernel density estimation over a stacked barchartplt.figure () plt.hist ([V1, v2], Histtype='barstacked', normed=True); V3=np.concatenate ((v1,v2)) Sns.kdeplot (v3);p lt.figure ()#we can pass keyword arguments for each individual component of the plotSns.distplot (v3, hist_kws={'Color':'Teal'}, kde_kws={'Color':'Navy'});p lt.figure ()#Sns.jointplot (v1, v2, alpha=0.4);#Grid = Sns.jointplot (v1, v2, alpha=0.4);#grid.ax_joint.set_aspect (' equal ')#Sns.jointplot (v1, v2, kind= ' hex ');#set the Seaborn style for all the following plots#sns.set_style (' white ')#Sns.jointplot (v1, v2, kind= ' KDE ', space=0); # space is used to set the margin of the joint plot

Output:

Joint plots

Second Example

Iris = Pd.read_csv ('iris.csv') sns.pairplot (iris, hue='Name ', diag_kind='KDE', size=2);

Third example

Iris = Pd.read_csv ('iris.csv') plt.figure (figsize= (8,6)) Plt.subplot ( 121) Sns.swarmplot ('Name''petallength', data= Iris);p lt.subplot (122) sns.violinplot ('Name ' Petallength ', Data=iris);

Output:

Data manipulation in Python (module 6)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.