[Haoi 2010] Software Installation __ Problem analysis

Source: Internet
Author: User
Topic Description:

Qaq ... Topic Analysis:

The dependency of the knapsack problem is called the tree-dependent backpack ...
The method of tree-type dynamic regression is used to solve
Transfer equation is not difficult
DP[I][J] represents the maximum value that can be achieved by the size of a tree backpack with the I root as J
In the actual operation we can use a virtual root to link the point without dependency ...
This transfer is nm2 N m 2 nm^2.
I heard that black technology can do nm N m nm

for (int i=w[now];i<=m;i++) Dp[now][i]=val[now];
for (int i=head[now];i;i=net[i])
    {
        dfs (to[i]);
        for (int j=m-w[now];j>=0;j--) for 
         (int k=0;k<=j;k++)
          Dp[now][j+w[now]]=std::max (DP[NOW][J+W[NOW]],DP [Now] [J+w[now]-k]+dp[to[i]][k]);
    }

To pay attention to a problem, when the dependence on the formation of the ring, we can only select all the points within the ring, or all do not choose, so we need to use Tarjan first to shrink the point ... Topic Link:

Bzoj 2427
Luogu 2515
COGS 444 Ac Code:

#include <cstdio> #include <algorithm> #include <cstring> #include <iostream> const int maxm= 
1001;
int DP[MAXM][501],D[MAXM];
int dfn[maxm],low[maxm],vis[maxm],c[maxm],stk[maxm],num,col,top;
int W[MAXM],VAL[MAXM],VAL[MAXM],W[MAXM],FA[MAXM];
int _head[maxm],_to[maxm<<1],_net[maxm<<1],_cnt;
int head[maxm],to[maxm<<1],net[maxm<<1],cnt;
int n,m;
    inline void Addedge (int u,int v) {cnt++;
to[cnt]=v,net[cnt]=head[u],head[u]=cnt;
    } inline void _addedge (int u,int v) {_cnt++;
_to[_cnt]=v,_net[_cnt]=_head[u],_head[u]=_cnt;
    } void Tarjan (int x) {dfn[x]=low[x]=++num;
    Stk[++top]=x;
    Vis[x]=1;
        for (int i=_head[x];i;i=_net[i]) {int p=_to[i];
            if (!dfn[p]) {Tarjan (P);
        Low[x]=std::min (Low[x],low[p]);
    else if (Vis[p]) low[x]=std::min (low[x],dfn[p]);
        } if (Low[x]==dfn[x]) {col++; while (stk[top]!=x) {C[stk[top]]=col;
        vis[stk[top--]]=0;
        } c[x]=col,vis[x]=0;
    top--;
    } void Dfs (int now) {for (int i=w[now];i<=m;i++) Dp[now][i]=val[now];
        for (int i=head[now];i;i=net[i]) {DFS (to[i]); for (int j=m-w[now];j>=0;j--) for (int k=0;k<=j;k++) Dp[now][j+w[now]]=std::max (Dp[now][j+w[now)],
    Dp[now][j+w[now]-k]+dp[to[i]][k]);
    int main () {//freopen ("install.in", "R", stdin);
    Freopen ("Install.out", "w", stdout);
    scanf ("%d%d", &n,&m);
    for (int i=1;i<=n;i++) scanf ("%d", &w[i]);
    for (int i=1;i<=n;i++) scanf ("%d", &val[i]);
        for (int i=1,x;i<=n;i++) {scanf ("%d", &fa[i]);
    if (Fa[i]) _addedge (fa[i],i);
    for (int i=1;i<=n;i++) if (!dfn[i]) Tarjan (i);
        for (int i=1;i<=n;i++) {if (C[i]!=c[fa[i]]) Addedge (C[fa[i]],c[i]), d[c[i]]++;
        W[c[i]]+=w[i];
    Val[c[i]]+=val[i]; for (int i=1;i<=col;i++) IF (!d[i]) Addedge (0,i);
    DFS (0);
    printf ("%d\n", Dp[0][m]);
return 0; }

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.