http://blog.csdn.net/pipisorry/article/details/39215089
The merging of Ndarray in NumPy in the multi-dimension
Implement MATLAB Data1=[r.*cos (t), R.*sin (t)]; functions:
Implementation of Matlab DATA=[DATA1;DATA2];
Data_pos =
[[-0.00870993 0.84913981]
[-0.28528784 0.2612078]
[-0.4475744 0.43677346]
[ -0.2473318-0.89767194]
[0.45242961-0.02112013]
[ -0.10939665-0.67678242]
[0.59871918-0.27938622]
[-0.67484345 0.18797474]
[0.04628507-0.14074493]
[0.27405096 0.91563243]]
Data_neg =
[[ -1.7135893-0.13973792]
[-1.69338611 0.4599861]
[0.4576769 1.68156328]
[0.1199849-1.00716347]
[0.94074345 1.03022516]
[ -0.68055284-1.84048252]
[1.35995126 0.11136057]
[1.04061602 0.89650711]
[-1.79624533 0.27777414]
[0.78416735 1.47684656]]
data = Np.append (Data_pos, data_neg, axis = 0)
data =
[[ -5.96464404e-01 4.06034396e-01]
[4.82952945E-01-1.20121194E-01]
[ -5.77977122E-01-3.79254316E-01]
[ -7.38540595e-01 5.30272266e-01]
[1.51701741E-01-2.33477263E-01]
[ -3.35472827e-04 4.38564615e-01]
[ -9.62188462e-01 2.36012802e-01]
[5.44815124E-01-5.36231442E-01]
[ -2.76687718E-01-3.30882444E-01]
[2.29255115E-01-5.06503177E-01]
[3.26605661e-01-1.86522383e+00]
[5.96712043e-01 1.46382588e+00]
[1.67364905e+00 9.05077496e-01]
[ -1.48502012E+00-3.60574944E-01]
[ -1.44121871e+00-1.33299063e+00]
[1.39996884e+00 1.79711008e-01]
[ -6.82403150e-02-1.53043305e+00]
[4.25909366e-01-1.10527802e+00]
[ -7.00656660e-01 8.22864651e-01]
[ -6.55652372e-01-1.80101194e+00]]
from:http://blog.csdn.net/pipisorry/article/details/39215089
Multi-dimensional array ndarray merge in Python