Python linear equations example based on Gaussian elimination method, python Linear Equations

Source: Internet
Author: User

Python linear equations example based on Gaussian elimination method, python Linear Equations

This example describes how to calculate a linear equations using the Gaussian elimination method in Python. We will share this with you for your reference. The details are as follows:

#! /Usr/bin/env python # coding = UTF-8 # change the above information as needed def print_matrix (info, m): # output matrix I = 0; j = 0; l = len (m) print info for I in range (0, len (m): for j in range (0, len (m [I]): if (j = l): print '|', print '% 6.4f' % m [I] [j], print printdef swap (a, B): t =; a = B; B = tdef solve (ma, B, n): global m; m = ma # It is mainly used to display global s in the final matrix; I = 0; j = 0; row_pos = 0; col_pos = 0; ik = 0; j K = 0 mik = 0.0; temp = 0.0 n = len (m) # row_pos variable marking row loops, col_pos variable marking column loops print_matrix ("first de matrix", m) while (row_pos <n) and (col_pos <n): print "Location: row_pos = % d, col_pos = % d" % (row_pos, col_pos) # select the principal component mik =-1 for I in range (row_pos, n): if (abs (m [I] [col_pos])> mik ): mik = abs (m [I] [col_pos]) ik = I if (mik = 0.0): col_pos = col_pos + 1 continue print_matrix ("select principal component", m )# Exchange two rows if (ik! = Row_pos): for j in range (col_pos, n): swap (m [row_pos] [j], m [ik] [j]) swap (m [row_pos] [n], m [ik] [n]); # outside the region? Print_matrix ("swap two rows", m) try: # Remove the meta m [row_pos] [n]/= m [row_pos] [col_pos] except t ZeroDivisionError: # Zero division exceptions generally occur when there is no solution or an infinite number of solutions ...... Return 0; j = n-1 while (j> = col_pos ): m [row_pos] [j]/= m [row_pos] [col_pos] j = j-1 for I in range (0, n): if (I = row_pos ): continue m [I] [n]-= m [row_pos] [n] * m [I] [col_pos] j = n-1 while (j> = col_pos ): m [I] [j]-= m [row_pos] [j] * m [I] [col_pos] j = j-1 print_matrix ("", m) row_pos = row_pos + 1; col_pos = col_pos + 1 for I in range (row_pos, n): if (abs (m [I] [n]) = 0.0): retu Rn 0 return 1if _ name _ = '_ main _': matrix = [2.0, 0.0,-2.0, 0.0], [0.0, 2.0, -1.0, 0.0], [0.0, 1.0, 0.0, 10.0] I = 0; j = 0; n = 0 # output equations print_matrix ("first matrix ", matrix) # solve the equations and output the solve information of the equations. ret = solve (matrix, 0, 0) if (ret! = 0): print "equations with solutions \ n" else: print "no unique or unsolvable equations \ n" # output equations and Their Solutions print_matrix ("equations and Their Solutions ", matrix) for I in range (0, len (m): print "x [% d] = % 6.4f" % (I, m [I] [len (m)])

Running result:

First-start matrix 2.0000 0.0000-2.0000 | 0.20.0.0000 2.0000-1.0000 | 0.20.0.0000 1.0000 0.0000 | 10.0000 first-start de matrix 2.0000 0.0000-2.0000 | 0.20.0.0000 2.0000-1.0000 | 0.20.0.0000 1.0000 0.0000 | 10.0000 position: row_pos = 0, col_pos = 0 select the principal component 2.0000 0.0000-2.0000 | 0.20.0.0000 2.0000-1.0000 | 0.20.0.0000 1.0000 | 0.0000 exchange two rows 10.0000 2.0000-0.0000 | 0.20.0.0000 2.0000-2.0000 | 0.20.0.0000 1.0000 1.0000 | 0.0000 million CNY 1.0000 0.0000-1.0000 | 0.20.0.0000 2.0000-1.0000 | 0.20.0.0000 1.0000 0.0000 | 10.0000 location: row_pos = 1, col_pos = 1 select Principal Component 1.0000 0.0000-1.0000 | 0.20.0.0000 2.0000-1.0000 | 0.20.0.0000 1.0000 | 0.0000 exchange two rows 10.0000 1.0000-0.0000 | 0.20.0.0000 1.0000-2.0000 | 0.20.0.0000 1.0000 1.0000 | 0.0000 million CNY 1.0000 0.0000-1.0000 | 0.20.0.0000 1.0000-0.5000 | 0.20.0.0000 0.0000 0.5000 | 10.0000 location: row_pos = 2, col_pos = 2 select Principal Component 1.0000 0.0000-1.0000 | 0.20.0.0000 1.0000-0.5000 | 0.20.0.0000 0.0000 | 0.5000 exchange two rows 10.0000 1.0000-0.0000 | 0.20.0.0000 1.0000-1.0000 | 0.20.0.0000 0.5000 0.0000 | 0.5000 million CNY 1.0000 0.0000 0.0000 | 000000000.0000 1.0000 0.0000 | 10.00000.0000 0.0000 | 1.0000 equations with solutions and solutions 20.0000 1.0000 0.0000 | 000000000.0000 0.0000 1.0000 | 10.00000.0000 0.0000 0.0000 | 00000000x [0] = 00000000x [1] = 10.20.x [2] = 20.0000

PS: Here are some recommended computing tools for your reference:

Calculation tool for online mona1 functions (equations:
Http://tools.jb51.net/jisuanqi/equ_jisuanqi

Scientific calculator online use _ advanced calculator online computing:
Http://tools.jb51.net/jisuanqi/jsqkexue

Online calculator _ standard calculator:
Http://tools.jb51.net/jisuanqi/jsq

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.