SQL Server 索引基礎知識(2)—-叢集索引,非叢集索引

來源:互聯網
上載者:User
SQL Server 索引基礎知識(2)----叢集索引,非叢集索引

[來自]http://blog.joycode.com/ghj/archive/2008/01/02/113291.aspx

由於需要給同事培訓資料庫的索引知識,就收集整理了這個系列的部落格。發表在這裡,也是對索引知識的一個總結回顧吧。通過總結,我發現自己以前很多很模糊的概念都清晰了很多。

不論是 叢集索引,還是非叢集索引,都是用B+樹來實現的。我們在瞭解這兩種索引之前,需要先瞭解B+樹。如果你對B樹不瞭解的話,建議參看以下幾篇文章:

BTree,B-Tree,B+Tree,B*Tree都是什麼
http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

B+ 型樹狀結構的結構圖:

B+ 型樹狀結構的特點:

  • 所有關鍵字都出現在葉子結點的鏈表中(稠密索引),且鏈表中的關鍵字恰好是有序的;
  • 不可能在非葉子結點命中;
  • 非葉子結點相當於是葉子結點的索引(稀疏索引),葉子結點相當於是儲存(關鍵字)資料的資料層;

B+ 型樹狀結構中增加一個資料,或者刪除一個資料,需要分多種情況處理,比較複雜,這裡就不詳述這個內容了。 

叢集索引(Clustered Index)

  • 叢集索引的分葉節點就是實際的資料頁
  • 在資料頁中資料按照索引順序儲存
  • 行的物理位置和行在索引中的位置是相同的
  • 每個表只能有一個叢集索引
  • 叢集索引的平均大小大約為表大小的5%左右

下面是兩副簡單描述叢集索引的: 

在叢集索引中執行下面語句的的過程:

select * from table where firstName = 'Ota'

 

一個比較抽象點的叢集索引圖示:

 

非叢集索引 (Unclustered Index)  

  • 非叢集索引的頁,不是資料,而是指向資料頁的頁。
  • 若未指定索引類型,則預設為非叢集索引
  • 分葉節點頁的次序和表的實體儲存體次序不同
  • 每個表最多可以有249個非叢集索引
  • 在非叢集索引建立之前建立叢集索引(否則會引發索引重建)

在非叢集索引中執行下面語句的的過程:

select * from employee where lname = 'Green'

一個比較抽象點的非叢集索引圖示:

 

什麼是 Bookmark Lookup

雖然SQL 2005 中已經不在提  Bookmark Lookup 了(換湯不換藥),但是我們的很多搜尋都是用的這樣的搜尋過程,如下:
先在非聚集中找,然後再在叢集索引中找。

 

在 http://www.sqlskills.com/ 提供的一個例子中,就給我們示範了 Bookmark Lookup  比 Table Scan 慢的情況,例子的指令碼如下:

USE CREDITgo-- These samples use the Credit database. You can download and restore the-- credit database from here:-- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip-- NOTE: This is a SQL Server 2000 backup and MANY examples will work on -- SQL Server 2000 in addition to SQL Server 2005.--------------------------------------------------------------------------------- (1) Create two tables which are copies of charge:--------------------------------------------------------------------------------- Create the HEAPSELECT * INTO ChargeHeap FROM Chargego-- Create the CL TableSELECT * INTO ChargeCL FROM ChargegoCREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)go--------------------------------------------------------------------------------- (2) Add the same non-clustered indexes to BOTH of these tables:--------------------------------------------------------------------------------- Create the NC index on the HEAPCREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)go-- Create the NC index on the CL TableCREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)go--------------------------------------------------------------------------------- (3) Begin to query these tables and see what kind of access and I/O returns--------------------------------------------------------------------------------- Get ready for a bit of analysis:SET STATISTICS IO ON-- Turn Graphical Showplan ON (Ctrl+K)-- First, a point query (also, see how a bookmark lookup looks in 2005)SELECT * FROM ChargeHeap WHERE Charge_no = 12345goSELECT * FROM ChargeCL WHERE Charge_no = 12345go-- What if our query is less selective?-- 1000 is .0625% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 1000goSELECT * FROM ChargeCL WHERE Charge_no < 1000go-- What if our query is less selective?-- 16000 is 1% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 16000goSELECT * FROM ChargeCL WHERE Charge_no < 16000go--------------------------------------------------------------------------------- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?--------------------------------------------------------------------------------- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 4000goSELECT * FROM ChargeCL WHERE Charge_no < 4000go-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3000goSELECT * FROM ChargeCL WHERE Charge_no < 3000go-- And - you can narrow it down by trying the middle ground:-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3500goSELECT * FROM ChargeCL WHERE Charge_no < 3500go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3250goSELECT * FROM ChargeCL WHERE Charge_no < 3250go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3375goSELECT * FROM ChargeCL WHERE Charge_no < 3375go-- Don't worry, I won't make you go through it all :)-- For the Heap Table (in THIS case), the cutoff is: 0.21%SELECT * FROM ChargeHeap  WHERE Charge_no < 3383goSELECT * FROM ChargeHeap WHERE Charge_no < 3384go-- For the Clustered Table (in THIS case), the cut-off is: 0.21%SELECT * FROM ChargeCL WHERE Charge_no < 3438SELECT * FROM ChargeCL WHERE Charge_no < 3439go

這個例子也就是 吳家震 在Teched 2007 上的那個示範例子。

小結:

這篇部落格只是簡單的用幾個圖表來介紹索引的實現方法:B+數, 叢集索引,非叢集索引,Bookmark Lookup 的資訊而已。

參考資料:

表組織和索引組織
http://technet.microsoft.com/zh-cn/library/ms189051.aspx
http://technet.microsoft.com/en-us/library/ms189051.aspx

How Indexes Work
http://manuals.sybase.com/onlinebooks/group-asarc/asg1200e/aseperf/@Generic__BookTextView/3358

Bookmark Lookup
http://blogs.msdn.com/craigfr/archive/2006/06/30/652639.aspx 

Logical and Physical Operators Reference
http://msdn2.microsoft.com/en-us/library/ms191158.aspx

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.