C語言擷取系統時間

來源:互聯網
上載者:User

C語言擷取系統時間的幾種方式 

 

C語言中如何擷取時間?精度如何?

1 使用time_t time( time_t * timer ) 精確到秒

2 使用clock_t clock() 得到的是CPU時間 精確到1/CLOCKS_PER_SEC秒

3 計算時間差使用double difftime( time_t timer1, time_t timer0 )

4 使用DWORD GetTickCount() 精確到毫秒

5 如果使用MFC的CTime類,可以用CTime::GetCurrentTime() 精確到秒

6 要擷取高精度時間,可以使用

BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency)

擷取系統的計數器的頻率

BOOL QueryPerformanceCounter(LARGE_INTEGER *lpPerformanceCount)

擷取計數器的值

然後用兩次計數器的差除以Frequency就得到時間。

7 Multimedia Timer Functions

The following functions are used with multimedia timers.

timeBeginPeriod/timeEndPeriod/timeGetDevCaps/timeGetSystemTime

//*********************************************************************

//用標準C實現擷取當前系統時間的函數

 

一.time()函數

 

     time(&rawtime)函數擷取目前時間距1970年1月1日的秒數,以秒計數單位,存於rawtime 中。

#include "time.h"

void main ()

{

time_t rawtime;

struct tm * timeinfo;

time ( &rawtime );

timeinfo = localtime ( &rawtime );

printf ( "\007The current date/time is: %s", asctime (timeinfo) );

exit(0);

}

=================

#include -- 必須的時間函數標頭檔

time_t -- 時間類型(time.h 定義是typedef long time_t; 追根溯源,time_t是long)

struct tm -- 時間結構,time.h 定義如下:

int tm_sec;

int tm_min;

int tm_hour;

int tm_mday;

int tm_mon;

int tm_year;

int tm_wday;

int tm_yday;

int tm_isdst;

time ( &rawtime ); -- 擷取時間,以秒計,從1970年1月一日起算,存於rawtime

localtime ( &rawtime ); -- 轉為當地時間,tm 時間結構

asctime ()-- 轉為標準ASCII時間格式:

星期 月 日 時:分:秒 年

 

-----------------------------------------------------------------------------

二.clock()函數,用clock()函數,得到系統啟動以後的毫秒級時間,然後除以CLOCKS_PER_SEC,就可以換成“秒”,標準c函數。

clock_t clock ( void );

#include

clock_t t = clock();

long sec = t / CLOCKS_PER_SEC;

他是記錄刻度的,實現看來不會很精確,需要實驗驗證;

---------------------------------------------------------------------------

三.gettime(&t); 據說tc2.0的time結構含有毫秒資訊

#include

#include

int main(void)

{

struct time t;

gettime(&t);

printf("The current time is: %2d:%02d:%02d.%02d\n",

t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);

return 0;

}

time 是一個結構體,, 其中成員函數 ti_hund 是毫秒。。。

 

--------------------------------------------------------------------------------

四.GetTickCount(),這個是windows裡面常用來計算程式已耗用時間的函數;

DWORD dwStart = GetTickCount();

//這裡運行你的程式碼

DWORD dwEnd = GetTickCount();

則(dwEnd-dwStart)就是你的程式已耗用時間, 以毫秒為單位

這個函數只精確到55ms,1個tick就是55ms。

--------------------------------------------------------------------------------

五.timeGetTime()t,imeGetTime()基本等於GetTickCount(),但是精度更高

DWORD dwStart = timeGetTime();

//這裡運行你的程式碼

DWORD dwEnd = timeGetTime();

則(dwEnd-dwStart)就是你的程式已耗用時間, 以毫秒為單位

雖然返回的值單位應該是ms,但傳說精度只有10ms。

=========================================

//*****************************************************************Unix

##unix時間相關,也是標準庫的

//*********************************************************************

1.timegm函數只是將struct tm結構轉成time_t結構,不使用時區資訊;

time_t timegm(struct tm *tm);

2.mktime使用時區資訊

time_t mktime(struct tm *tm);

timelocal 函數是GNU擴充的與posix函數mktime相當

time_t timelocal (struct tm *tm);

3.gmtime函數只是將time_t結構轉成struct tm結構,不使用時區資訊;

struct tm * gmtime(const time_t *clock);

4.localtime使用時區資訊

struct tm * localtime(const time_t *clock);

1.time擷取時間,stime設定時間

time_t t;

t = time(&t);

2.stime其參數應該是GMT時間,根據本地時區設定為本地時間;

int stime(time_t *tp)

3.UTC=true 表示採用夏時制;

4.檔案的修改時間等資訊全部採用GMT時間存放,不同的系統在得到修改時間後通過localtime轉換成本地時間;

5.設定時區推薦使用setup來設定;

6.設定時區也可以先更變/etc/sysconfig/clock中的設定 再將ln -fs /usr/share/zoneinfo/xxxx/xxx /etc/localtime 才能重效

time_t只能表示68年的範圍,即mktime只能返回1970-2038這一段範圍的time_t

看看你的系統是否有time_t64,它能表示更大的時間範圍

//***************************************************************windows

##Window裡面的一些不一樣的

//*********************************************************************

 

一.CTime () 類

VC編程一般使用CTime類 獲得當前日期和時間

 

CTime t = GetCurrentTime();

SYSTEMTIME 結構包含毫秒資訊

typedef struct _SYSTEMTIME {

WORD wYear;

WORD wMonth;

WORD wDayOfWeek;

WORD wDay;

WORD wHour;

WORD wMinute;

WORD wSecond;

WORD wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

SYSTEMTIME t1;

GetSystemTime(&t1)

CTime curTime(t1);

WORD ms = t1.wMilliseconds;

SYSTEMTIME sysTm;

::GetLocalTime(&sysTm);

在time.h中的_strtime() //只能在windows中用

char t[11];

_strtime(t);

puts(t);

 

//*****************************

獲得當前日期和時間

CTime tm=CTime::GetCurrentTime();

CString str=tm.Format("%Y-%m-%d");

在VC中,我們可以藉助CTime時間類,擷取系統當前日期,具體使用方法如下:

CTime t = CTime::GetCurrentTime(); //擷取系統日期,儲存在t裡面

int d=t.GetDay(); //獲得當前日期

int y=t.GetYear(); //擷取當前年份

int m=t.GetMonth(); //擷取當前月份

int h=t.GetHour(); //擷取當前為幾時

int mm=t.GetMinute(); //擷取當前分鐘

int s=t.GetSecond(); //擷取當前秒

int w=t.GetDayOfWeek(); //擷取星期幾,注意1為星期天,7為星期六

 

二.CTimeSpan類

如果想計算兩段時間的差值,可以使用CTimeSpan類,具體使用方法如下:

CTime t1( 1999, 3, 19, 22, 15, 0 );

CTime t = CTime::GetCurrentTime();

CTimeSpan span=t-t1; //計算當前系統時間與時間t1的間隔

int iDay=span.GetDays(); //擷取這段時間間隔共有多少天

int iHour=span.GetTotalHours(); //擷取總共有多少小時

int iMin=span.GetTotalMinutes();//擷取總共有多少分鐘

int iSec=span.GetTotalSeconds();//擷取總共有多少秒

 

 

------------------------------------------------------------------------------

 

三._timeb()函數

_timeb定義在SYS\TIMEB.H,有四個fields

dstflag

millitm

time

timezone

void _ftime( struct _timeb *timeptr );

struct _timeb timebuffer;

_ftime( &timebuffer );

取目前時間:文檔講可以到ms,有人測試,好象只能到16ms!

 

 

四.設定計時器

定義TIMER ID

#define TIMERID_JISUANFANGSHI 2

在適當的地方設定時鐘,需要開始其作用的地方;

SetTimer(TIMERID_JISUANFANGSHI,200,NULL);

在不需要定時器的時候的時候銷毀掉時鐘

KillTimer(TIMERID_JISUANFANGSHI);

對應VC程式的訊息映射

void CJisuan::OnTimer(UINT nIDEvent)

{switch(nIDEvent)}

---------------------------------------------------------------------------------------

##如何設定當前系統時間---------------------------------------windows

SYSTEMTIME m_myLocalTime,*lpSystemTime;

m_myLocalTime.wYear=2003;

m_myLocalTime.wM;

m_myLocalTime.wDay=1;

m_myLocalTime.wHour=0;

m_myLocalTime.wMinute=0;

m_myLocalTime.wSec;

m_myLocalTime.wMillisec;

lpSystemTime=&m_myLocalTime;

if( SetLocalTime(lpSystemTime) ) //此處換成 SetSystemTime( )也不行

MessageBox("OK !");

else

MessageBox("Error !");

SYSTEMTIME m_myLocalTime,*lpSystemTime;

m_myLocalTime.wYear=2003;

m_myLocalTime.wM;

m_myLocalTime.wDay=1;

lpSystemTime=&m_myLocalTime;

if( SetDate(lpSystemTime) ) //此處換成 SetSystemTime( )也不行

MessageBox("OK !");

else

MessageBox("Error !");

 

本文來自CSDN部落格,轉載請標明出處:http://blog.csdn.net/khuang2008/archive/2008/12/09/3483274.aspx

 

一種製作微秒級精度定時器的方法 

當使用定時器時,在很多情況下只用到毫秒級的時間間隔,所以只需用到下面的兩種常用方式就滿足要求了。一是用SetTimer函數建立一個定時器後,在程式中通過處理由定時器發送到線程訊息佇列中的WM_TIMER訊息,而得到定時的效果(退出程式時別忘了調用和SetTimer配對使用的KillTimer函數)。二是利用GetTickCount函數可以返回自電腦啟動後的時間,通過兩次調用GetTickCount函數,然後控制它們的差值來取得定時效果,此方式跟第一種方式一樣,精度也是毫秒級的。

用這兩種方式取得的定時效果雖然在許多場合已經滿足實際的要求,但由於它們的精度只有毫秒級的,而且在要求定時時間間隔小時,實際定時誤差大。下面介紹一種能取得高精度定時的方法。

在一些電腦硬體系統中,包含有高精度運行計數器(high-resolution   performance   counter),利用它可以獲得高精度定時間隔,其精度與CPU的時鐘頻率有關。採用這種方法的步驟如下:

1、 首先調用QueryPerformanceFrequency函數取得高精度運行計數器的頻率f。單位是每秒多少次(n/s),此數一般很大。

2、 在需要定時的代碼的兩端分別調用QueryPerformanceCounter以取得高精度運行計數器的數值n1,n2。兩次數值的差值通過f換算成時間間隔,t=(n2-n1)/f。

下面舉一個例子來示範這種方法的使用及它的精確度。

在VC   6.0   下用MFC建立一個對話方塊工程,取名為HightTimer.在對話方塊面板中控制項的布局如:

其中包含兩個靜態文字框,兩個編輯框和兩個按紐。上面和下面位置的編輯框的ID分別為IDC_E_TEST和IDC_E_ACTUAL,通過MFC   ClassWizard添加的成員變數也分別對應為DWORD   m_dwTest和DWORD   m_dwAct.   “退出”按紐的ID為IDOK,“開始測試”按紐ID為IDC_B_TEST,用MFC   ClassWizard添加此按紐的單擊訊息處理函數如下:

void   CHightTimerDlg::OnBTest()

{

//   TODO:   Add   your   control   notification   handler   code   here

  UpdateData(TRUE);   //取輸入的測試時間值到與編輯框相關聯的成員變數m_dwTest中

 

  LARGE_INTEGER   frequence;

  if(!QueryPerformanceFrequency(   &frequence))   //取高精度運行計數器的頻率,若硬體不支援則返回FALSE

  MessageBox("Your   computer   hardware   doesn't   support   the   high-resolution   performance   counter",

  "Not   Support",   MB_ICONEXCLAMATION   |   MB_OK);

 

  LARGE_INTEGER   test,   ret;

  test.QuadPart   =   frequence.QuadPart   *   m_dwTest   /   1000000;   //通過頻率換算微秒數到對應的數量(與CPU時鐘有關),1秒=1000000微秒

  ret   =   MySleep(   test   );   //調用此函數開始延時,返回實際花銷的數量

 

  m_dwAct   =   (DWORD)(1000000   *   ret.QuadPart   /   frequence.QuadPart   );   //換算到微秒數

 

  UpdateData(FALSE);   //顯示到對話方塊面板

  }

   其中上面調用的MySleep函數如下:

 

  LARGE_INTEGER   CHightTimerDlg::MySleep(LARGE_INTEGER   Interval)

  /////////////////////////////////////////////////////////////////////////////////////////////////////////////  

  //   功能:執行實際的延時功能    
  //   參數:Interval   參數為需要執行的延時與時間有關的數量    
  //   傳回值:返回此函數執行後實際所用的時間有關的數量    
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////

  {    

  LARGE_INTEGER   privious,   current,   Elapse;

 

  QueryPerformanceCounter(   &privious   );

  current   =   privious;

 

  while(   current.QuadPart   -   privious.QuadPart   <   Interval.QuadPart   )

  QueryPerformanceCounter(   ¤t   );

 

  Elapse.QuadPart   =   current.QuadPart   -   privious.QuadPart;

 

  return   Elapse;

  }

  註:別忘了在標頭檔中為此函數添加函式宣告。

 

  至此,可以編譯和執行此工程了,結果如所示。在本人所用的機上(奔騰366,   64M記憶體)測試,當測試時間超過3微秒時,準確度已經非常高了,此時機器執行本身延時函數代碼的時間對需要延時的時間影響很小了。

 

  上面的函數由於示範測試的需要,沒有在函數級封裝,下面給出的函數基本上可以以全域函數的形式照搬到別的程式中。

 

  BOOL   MySleep(DWORD   dwInterval)

  /////////////////////////////////////////////////////////////////////////////////////////////////////////////  

  //   功能:執行微秒級的延時功能    
  //   參數:Interval   參數為需要的延時數(單位:微秒)    
  //   傳回值:若電腦硬體不支援此功能,返回FALSE,若函數執行成功,返回TRUE    
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////  

  {

  BOOL   bNormal   =   TRUE;

  LARGE_INTEGER   frequence,   privious,   current,   interval;

 

  if(!QueryPerformanceFrequency(   &frequence))

  {

  ::MessageBox(NULL,   "Your   computer   hardware   doesn't   support   the   high-resolution   performance   counter",

  "Not   Support",   MB_ICONEXCLAMATION   |   MB_OK);   //或其它的提示資訊

  return   FALSE;

  }

 

  interval.QuadPart   =   frequence.QuadPart   *   dwInterval   /   1000000;

 

  bNormal   =   bNormal   &&   QueryPerformanceCounter(   &privious   );

  current   =   privious;

 

  while(   current.QuadPart   -   privious.QuadPart   <   interval.QuadPart   )

  bNormal   =   bNormal   &&   QueryPerformanceCounter(   ¤t   );

 

  return   bNormal;

  }

 

  需要指出的是,由於在此函數中的代碼很多,機器在執行這些代碼所花費的時間也很長,所以在需要幾個微秒的延時時,會影響精度。實際上,讀者在熟悉這種方法後,只要使用QueryPerformanceFrequency和QueryPerformanceCounter這兩個函數就能按實際需要寫出自己的延時代碼了。

 

使用CPU時間戳記進行高精度計時 

對關注效能的程式開發人員而言,一個好的計時組件既是益友,也是良師。計時器既可以作為程式組件協助程式員精確的控製程序進程,又是一件有力的調試武器,在有經驗的程式員手裡可以儘快的確定程式的效能瓶頸,或者對不同的演算法作出令人信服的效能比較。

 

在Windows平台下,常用的計時器有兩種,一種是timeGetTime多媒體計時器,它可以提供毫秒級的計時。但這個精度對很多應用場合而言還是太粗糙了。另一種是QueryPerformanceCount計數器,隨系統的不同可以提供微秒級的計數。對於即時圖形處理、多媒體資料流處理、或者即時系統構造的程式員,善用QueryPerformanceCount/QueryPerformanceFrequency是一項基本功。

 

本文要介紹的,是另一種直接利用Pentium   CPU內部時間戳記進行計時的高精度計時手段。以下討論主要得益於《Windows圖形編程》一書,第15頁-17頁,有興趣的讀者可以直接參考該書。關於RDTSC指令的詳細討論,可以參考Intel產品手冊。本文僅僅作拋磚之用。

 

在Intel   Pentium以上層級的CPU中,有一個稱為“時間戳記(Time   Stamp)”的組件,它以64位無符號整型數的格式,記錄了自CPU上電以來所經過的刻度數。由於目前的CPU主頻都非常高,因此這個組件可以達到納秒級的計時精度。這個精確性是上述兩種方法所無法比擬的。

 

在Pentium以上的CPU中,提供了一條機器指令RDTSC(Read   Time   Stamp   Counter)來讀取這個時間戳記的數字,並將其儲存在EDX:EAX寄存器對中。由於EDX:EAX寄存器對恰好是Win32平台下C++語言儲存函數傳回值的寄存器,所以我們可以把這條指令看成是一個普通的函數調用。像這樣:

 

inline   unsigned   __int64   GetCycleCount()  

  {  

__asm   RDTSC  

  }  

 

但是不行,因為RDTSC不被C++的內嵌彙編器直接支援,所以我們要用_emit偽指令直接嵌入該指令的機器碼形式0X0F、0X31,如下:

 

inline   unsigned   __int64   GetCycleCount()  
  {  
    __asm   _emit   0x0F  
    __asm   _emit   0x31  
  }  
   
  以後在需要計數器的場合,可以像使用普通的Win32   API一樣,調用兩次GetCycleCount函數,比較兩個傳回值的差,像這樣:  
   
  unsigned   long   t;  
  t   =   (unsigned   long)GetCycleCount();  
  //Do   Something   time-intensive   ...  
  t   -=   (unsigned   long)GetCycleCount();  
   
    《Windows圖形編程》第15頁編寫了一個類,把這個計數器封裝起來。有興趣的讀者可以去參考那個類的代碼。作者為了更精確的定時,做了一點小小的改進,把執行RDTSC指令的時間,通過連續兩次調用GetCycleCountFunction Compute出來並儲存了起來,以後每次計時結束後,都從實際得到的計數中減掉這一小段時間,以得到更準確的計時數字。但我個人覺得這一點點改進意義不大。在我的機器上實測,這條指令大概花掉了幾十到100多個周期,在Celeron   800MHz的機器上,這不過是十分之一微秒的時間。對大多數應用來說,這點時間完全可以忽略不計;而對那些確實要精確到納秒數量級的應用來說,這個補償也過於粗糙了。  
   
  這個方法的優點是:  
   
  1.高精度。可以直接達到納秒級的計時精度(在1GHz的CPU上每個刻度就是一納秒),這是其他計時方法所難以企及的。  
   
  2.成本低。timeGetTime   函數需要連結多媒體庫winmm.lib,QueryPerformance*   函數根據MSDN的說明,需要硬體的支援(雖然我還沒有見過不支援的機器)和KERNEL庫的支援,所以二者都只能在Windows平台下使用(關於DOS平台下的高精度計時問題,可以參考《圖形程式開發人員指南》,裡面有關於控制定時器8253的詳細說明)。但RDTSC指令是一條CPU指令,凡是i386平台下Pentium以上的機器均支援,甚至沒有平台的限制(我相信i386版本UNIX和Linux下這個方法同樣適用,但沒有條件實驗),而且函數調用的開銷是最小的。  
   
  3.具有和CPU主頻直接對應的速率關係。一個計數相當於1/(CPU主頻Hz數)秒,這樣只要知道了CPU的主頻,可以直接計算出時間。這和QueryPerformanceCount不同,後者需要通過QueryPerformanceFrequency擷取當前計數器每秒的計數次數才能換算成時間。  
   
  這個方法的缺點是:  
   
  1.現有的C/C++編譯器多數不直接支援使用RDTSC指令,需要用直接嵌入機器碼的方式編程,比較麻煩。  
   
  2.資料抖動比較厲害。其實對任何計量手段而言,精度和穩定性永遠是一對矛盾。如果用低精度的timeGetTime來計時,基本上每次計時的結果都是相同的;而RDTSC指令每次結果都不一樣,經常有幾百甚至上千的差距。這是這種方法高精度本身固有的矛盾。  
   
  關於這個方法計時的最大長度,我們可以簡單的用下列公式計算:  
   
  自CPU上電以來的秒數   =   RDTSC讀出的周期數   /   CPU主頻速率(Hz)  
   
  64位不帶正負號的整數所能表達的最大數字是1.8×10^19,在我的Celeron   800上可以計時大約700年(書中說可以在200MHz的Pentium上計時117年,這個數字不知道是怎麼得出來的,與我的計算有出入)。無論如何,我們大可不必關心溢出的問題。  
   
  下面是幾個小例子,簡要比較了三種計時方法的用法與精度  
   
  //Timer1.cpp   使用了RDTSC指令的Timer類//KTimer類的定義可以參見《Windows圖形編程》P15  
  //編譯行:CL   Timer1.cpp   /link   USER32.lib  
  #include   <stdio.h>  
  #include   "KTimer.h"  
  main()  
  {  
    unsigned   t;  
    KTimer   timer;  
    timer.Start();  
    Sleep(1000);  
    t   =   timer.Stop();  
    printf("Lasting   Time:   %d\n",t);  
  }  
   
  //Timer2.cpp   使用了timeGetTime函數  
  //需包含<mmsys.h>,但由於Windows標頭檔錯綜複雜的關係  
  //簡單包含<windows.h>比較偷懶:)  
  //編譯行:CL   timer2.cpp   /link   winmm.lib    
  #include   <windows.h>  
  #include   <stdio.h>  
   
  main()  
  {  
    DWORD   t1,   t2;  
    t1   =   timeGetTime();  
    Sleep(1000);  
    t2   =   timeGetTime();  
    printf("Begin   Time:   %u\n",   t1);  
    printf("End   Time:   %u\n",   t2);  
    printf("Lasting   Time:   %u\n",(t2-t1));  
  }  
   
  //Timer3.cpp   使用了QueryPerformanceCounter函數  
  //編譯行:CL   timer3.cpp   /link   KERNEl32.lib  
  #include   <windows.h>  
  #include   <stdio.h>  
   
  main()  
  {  
    LARGE_INTEGER   t1,   t2,   tc;  
    QueryPerformanceFrequency(&tc);  
    printf("Frequency:   %u\n",   tc.QuadPart);  
    QueryPerformanceCounter(&t1);  
    Sleep(1000);  
    QueryPerformanceCounter(&t2);  
    printf("Begin   Time:   %u\n",   t1.QuadPart);  
    printf("End   Time:   %u\n",   t2.QuadPart);  
    printf("Lasting   Time:   %u\n",(   t2.QuadPart-   t1.QuadPart));  
  }  
   
  ////////////////////////////////////////////////  
  //以上三個樣本程式都是測試1秒鐘休眠所耗費的時間  
  file://測/試環境:Celeron   800MHz   /   256M   SDRAM      
  //                     Windows   2000   Professional   SP2  
  //                     Microsoft   Visual   C++   6.0   SP5  
  ////////////////////////////////////////////////  
   
  以下是Timer1的運行結果,使用的是高精度的RDTSC指令  
  Lasting   Time:   804586872  
   
  以下是Timer2的運行結果,使用的是最粗糙的timeGetTime   API  
  Begin   Time:   20254254  
  End   Time:   20255255  
  Lasting   Time:   1001  
   
  以下是Timer3的運行結果,使用的是QueryPerformanceCount   API  
  Frequency:   3579545  
  Begin   Time:   3804729124  
  End   Time:   3808298836  
  Lasting   Time:   3569712  

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.