《演算法導論》好是好,只是看虛擬碼太頭痛了,總想要是有個C語言版的《演算法導論》就好了。
前幾天研究了紅/黑樹狀結構,把它翻譯成C語言。在VC6.0上編譯測試通過。並且寫了一個CView類來顯示效果。
標頭檔 rb_tree.h
#ifndef RB_TREE_H
#define RB_TREE_H
enum NODECOLOR {RED = 0, BLACK = 1};
typedef int NODEDATA;
struct rb_tree_node
{
NODECOLOR color;
int key;
NODEDATA info;
rb_tree_node* left;
rb_tree_node* right;
rb_tree_node* parent;
};
struct rb_tree
{
rb_tree_node* root;
rb_tree_node* nil;
};
void init_rb_tree(rb_tree* t);
void left_rotate(rb_tree* t, rb_tree_node* x);
void right_rotate(rb_tree* t, rb_tree_node* x);
void rb_insert(rb_tree* t, int key, NODEDATA info = 0);
void rb_insert_(rb_tree* t, rb_tree_node* z);
void rb_insert_fixup(rb_tree* t, rb_tree_node* z);
void rb_delete(rb_tree* t, int key);
void rb_delete_(rb_tree* t, rb_tree_node* z);
void rb_delete_fixup(rb_tree* t, rb_tree_node* x);
int get_tree_height(rb_tree* t, rb_tree_node* x);
#endif
實現檔案:rb_tree.cpp
/*
紅/黑樹狀結構的實現,根據《演算法導論》虛擬碼翻譯
作者:胡維臣 huweichen@163.com
時間:2010.6.26
*/
#include <stdlib.h>
//#include <malloc.h>
#include "rb_tree.h"
void init_rb_tree(rb_tree* t)
{
rb_tree_node* node = new rb_tree_node;
node->color = BLACK;
node->info = 0;
node->key = 0;
node->left = 0;
node->parent = 0;
node->right = 0;
t->nil = node;
t->root = t->nil;
}
int get_tree_height(rb_tree* t, rb_tree_node* x)
{
int lh = 0;
int rh = 0;
if(x->left != t->nil)
{
lh = get_tree_height(t, x->left);
}
if(x->right != t->nil)
{
rh = get_tree_height(t, x->right);
}
if(lh > rh)
{
return lh + 1;
}
else
{
return rh + 1;
}
}
void left_rotate(rb_tree* t, rb_tree_node* x)
{
rb_tree_node* y = x->right;
x->right = y->left;
if(y->left != t->nil)
{
y->left->parent = x;
}
y->parent = x->parent;
if(x->parent == t->nil)
{
t->root = y;
}
else if(x == x->parent->left)
{
x->parent->left = y;
}
else
{
x->parent->right = y;
}
y->left = x;
x->parent = y;
}
void right_rotate(rb_tree* t, rb_tree_node* x)
{
rb_tree_node* y = x->left;
//先把左子節點的右子節點作為左子節點
x->left = y->right;
if(y->right != t->nil)
{
y->right->parent = x;
}
//再把原左子節點替代自己的位置
y->parent = x->parent;
if(x->parent == t->nil)
{
t->root = y;
}
else if(x == x->parent->right)
{
x->parent->right = y;
}
else
{
x->parent->left = y;
}
//最後把自己作為原左子節點的右子節點
y->right = x;
x->parent = y;
}
void rb_insert(rb_tree* t, int key, NODEDATA info)
{
rb_tree_node* node = new rb_tree_node;
node->key = key;
node->info = info;
rb_insert_(t, node);
}
void rb_insert_(rb_tree* t, rb_tree_node* z)
{
rb_tree_node* y = t->nil;
rb_tree_node* x = t->root;
//找一個合適的插入位置
while(x != t->nil)
{
y = x;
if(z->key == x->key)
{
delete z;
return;
}
else if(z->key < x->key)
{
x = x->left;
}
else
{
x = x->right;
}
}
//插入節點
z->parent = y;
if(y == t->nil)
{
t->root = z;
}
else if(z->key < y->key)
{
y->left = z;
}
else
{
y->right = z;
}
//將新節點的其它域賦值
z->left = t->nil;
z->right = t->nil;
z->color = RED;
//修改樹,以滿足紅/黑樹狀結構的性質
rb_insert_fixup(t, z);
}
void rb_insert_fixup(rb_tree* t, rb_tree_node* z)
{
rb_tree_node* y = t->nil;
//迴圈直到父節點為黑色
while(z->parent->color == RED)
{
//如果父節點是祖父節點的左子節點
if(z->parent == z->parent->parent->left)
{
y = z->parent->parent->right;
//如果叔叔節點也是紅色,則把父節點和叔叔節點都設為黑色,把祖父節點設為紅色
if(y->color == RED)
{
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
}
//如果叔叔節點是黑色,那麼把父節點變成黑色,把祖父節點變成紅色,
//然後右旋轉,使祖父節點成為叔叔節點
else
{
//如果是右子節點,先左旋轉,這樣下面的右旋轉後才會對稱
if(z == z->parent->right)
{
z = z->parent;
left_rotate(t, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
right_rotate(t, z->parent->parent);
}
}
//下面代碼是和上面對稱的
else
{
y = z->parent->parent->left;
if(y->color == RED)
{
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
}
else
{
if(z == z->parent->left)
{
z = z->parent;
right_rotate(t, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
left_rotate(t, z->parent->parent);
}
}
}
t->root->color = BLACK;
}
rb_tree_node* find_node(rb_tree* t, int key)
{
rb_tree_node* x = t->root;
while(x != t->nil)
{
if(key == x->key)
{
return x;
}
else if(key < x->key)
{
x = x->left;
}
else
{
x = x->right;
}
}
return t->nil;
}
void rb_delete(rb_tree* t, int key)
{
rb_tree_node* x = find_node(t, key);
if(x != t->nil)
{
rb_delete_(t, x);
}
}
rb_tree_node* tree_minimum(rb_tree* t, rb_tree_node* x)
{
while(x->left != t->nil)
{
x = x->left;
}
return x;
}
rb_tree_node* tree_successor(rb_tree* t, rb_tree_node* x)
{
rb_tree_node* y = t->nil;
if(x->right != t->nil)
{
return tree_minimum(t, x->right);
}
y = x->parent;
while(y != t->nil && x == y->right)
{
x = y;
y = y->parent;
}
return y;
}
void rb_delete_(rb_tree* t, rb_tree_node* z)
{
rb_tree_node* y = t->nil;
rb_tree_node* x = t->nil;
//只要z有一個位元組點不為空白,y就等於z,否則y為z的後驅
if(z->left == t->nil || z->right == t->nil)
{
y = z;
}
else
{
y = tree_successor(t, z);
}
//把x設為y的子節點,當然也有可能為nil
if(y->left != t->nil)
{
x = y->left;
}
else
{
x = y->right;
}
//從樹中刪除y,但暫時不釋放y所佔記憶體,因為後面還要用到
x->parent = y->parent;
if(y->parent == t->nil)
{
t->root = x;
}
else
{
if(y == y->parent->left)
{
y->parent->left = x;
}
else
{
y->parent->right = x;
}
}
//如果y不等於z,而是z的後驅,則把y的關鍵字和資料拷貝到z
if(y != z)
{
z->key = y->key;
z->info = y->info;
}
//如果被刪的y是黑結點,樹的紅黑性質遭到破壞,即黑高度變了,則需要調整
if(y->color == BLACK)
{
rb_delete_fixup(t, x);
}
//這時,可以釋放y所佔記憶體了
delete y;
}
void rb_delete_fixup(rb_tree* t, rb_tree_node* x)
{
rb_tree_node* w = t->nil;
//x的顏色為只有在黑色情況下才需要調整,如果x為紅色,直接把它設為黑色就可以了
while(x != t->root && x->color == BLACK)
{
if(x == x->parent->left)
{
//把w設為兄節點
w = x->parent->right;
//如果w為紅色,那麼把w設為黑色,把w的父節點設為紅色,然後把父節點左旋轉
if(w->color == RED)
{
w->color = BLACK;
x->parent->color = RED;
left_rotate(t, x->parent);
w = x->parent->right;
}
//如果w的左右子節點都為黑色,把w設為紅色,把x設為x的父節點,
//這時,新x的左右子節點的黑高度就一致了,即x是一顆紅/黑樹狀結構,但新x的兄節點的
//黑高度仍然大一個,所以進入下一次循壞,繼續調整
if(w->left->color == BLACK && w->right->color == BLACK)
{
w->color = RED;
x = x->parent;
}
else
{
//如果w的左子節點為紅,右子節點為黑,則先把w設為紅色,左子節點設黑色,
//然後右旋轉,這樣做是為下面的左旋轉做好準備
if(w->right->color == BLACK)
{
w->left->color = BLACK;
w->color = RED;
right_rotate(t, w);
w = x->parent->right;
}
//把w設為父節點的顏色,這樣做是為了在下面的左旋轉後使新舊父節點的顏色不變,
//再把w的父節點和右子節點都設為黑色,然後左旋轉,
//這樣左子節點和右子節點的黑高度就一致了,不用再調整了,所以把x設為root。
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
left_rotate(t, x->parent);
x = t->root;
}
}
//下面代碼和上面是對稱的
else
{
w = x->parent->left;
if(w->color == RED)
{
w->color = BLACK;
x->parent->color = RED;
right_rotate(t, x->parent);
w = x->parent->left;
}
if(w->right->color == BLACK && w->left->color == BLACK)
{
w->color = RED;
x = x->parent;
}
else
{
if(w->left->color == BLACK)
{
w->right->color = BLACK;
w->color = RED;
left_rotate(t, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
right_rotate(t, x->parent);
x = t->root;
}
}
}
x->color = BLACK;
}
用來顯試效果的CTestRBTreeView類
void CTestRBTreeView::OnDraw(CDC* pDC)
{
CTestRBTreeDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(rb_tree1.root == rb_tree1.nil)
return;
CRect rcClient;
GetClientRect(&rcClient);
int x = rcClient.Width() / 2;
int y = 30;
int level = get_tree_height(&rb_tree1, rb_tree1.root);
DrawRBTree(pDC, &rb_tree1, rb_tree1.root, level, x, y);
}
#define NodeDistance 24
#define Radius 20
void CTestRBTreeView::DrawRBTree(CDC *pDC, rb_tree* t, rb_tree_node* node, int level, int x, int y)
{
if(node == t->nil)
return;
CPen pen;
CPen penBlue;
penBlue.CreatePen(PS_SOLID, 1, COLORREF(0xff0000));
if(node->left != t->nil)
{
int xLeft = x - (NodeDistance * (pow(2, level) - 1)) / 4;
pDC->SelectObject(&penBlue);
pDC->MoveTo(x, y);
pDC->LineTo(xLeft, y + 60);
DrawRBTree(pDC, t, node->left, level - 1, xLeft, y + 60);
}
if(node->right != t->nil)
{
int xRight = x + (NodeDistance * (pow(2, level) - 1)) / 4;
pDC->SelectObject(&penBlue);
pDC->MoveTo(x, y);
pDC->LineTo(xRight, y + 60);
DrawRBTree(pDC, t, node->right, level - 1, xRight, y + 60);
}
if(node->color == RED)
{
pDC->SetTextColor(0x0000ff);
pen.CreatePen(PS_SOLID, 1, 0x0000ff);
}
else
{
pDC->SetTextColor(0);
pen.CreatePen(PS_SOLID, 1, COLORREF(0));
}
pDC->SelectObject(&pen);
CRect rect;
rect.left = x - 12;
rect.top = y - 12;
rect.right = x + 12;
rect.bottom = y + 12;
pDC->Ellipse(&rect);
CString str;
str.Format("%d", node->key);
if(node->key < 10)
{
pDC->TextOut(x - 4, y - 8, str);
}
else
{
pDC->TextOut(x - 8, y - 8, str);
}
}