標籤:site ssh mod overwrite when cli char data- comm
[Author]: kwu
基於sparksql調用shell指令碼運行SQL,sparksql提供了類似hive中的 -e , -f ,-i的選項
1、定時呼叫指令碼
#!/bin/sh # upload logs to hdfs yesterday=`date --date=‘1 days ago‘ +%Y%m%d` /opt/modules/spark/bin/spark-sql -i /opt/bin/spark_opt/init.sql --master spark://10.130.2.20:7077 --executor-memory 6g --total-executor-cores 45 --conf spark.ui.port=4075 -e "insert overwrite table st.stock_realtime_analysis PARTITION (DTYPE=‘01‘ ) select t1.stockId as stockId, t1.url as url, t1.clickcnt as clickcnt, 0, round((t1.clickcnt / (case when t2.clickcntyesday is null then 0 else t2.clickcntyesday end) - 1) * 100, 2) as LPcnt, ‘01‘ as type, t1.analysis_date as analysis_date, t1.analysis_time as analysis_time from (select stock_code stockId, concat(‘http://stockdata.stock.hexun.com/‘, stock_code,‘.shtml‘) url, count(1) clickcnt, substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),1,10) analysis_date, substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),12,8) analysis_time from dms.tracklog_5min where stock_type = ‘STOCK‘ and day = substr(from_unixtime(unix_timestamp(), ‘yyyyMMdd‘), 1, 8) group by stock_code order by clickcnt desc limit 20) t1 left join (select stock_code stockId, count(1) clickcntyesday from dms.tracklog_5min a where stock_type = ‘STOCK‘ and substr(datetime, 1, 10) = date_sub(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),1) and substr(datetime, 12, 5) <substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘), 12, 5) and day = ‘${yesterday}‘ group by stock_code) t2 on t1.stockId = t2.stockId; " sqoop export --connect jdbc:mysql://10.130.2.245:3306/charts --username guojinlian --password Abcd1234 --table stock_realtime_analysis --fields-terminated-by ‘\001‘ --columns "stockid,url,clickcnt,splycnt,lpcnt,type" --export-dir /dw/st/stock_realtime_analysis/dtype=01;
init.sql內容為載入udf:
add jar /opt/bin/UDF/hive-udf.jar;create temporary function udtf_stockidxfund as ‘com.hexun.hive.udf.stock.UDTFStockIdxFund‘;create temporary function udf_getbfhourstime as ‘com.hexun.hive.udf.time.UDFGetBfHoursTime‘;create temporary function udf_getbfhourstime2 as ‘com.hexun.hive.udf.time.UDFGetBfHoursTime2‘;create temporary function udf_stockidxfund as ‘com.hexun.hive.udf.stock.UDFStockIdxFund‘;create temporary function udf_md5 as ‘com.hexun.hive.udf.common.HashMD5UDF‘;create temporary function udf_murhash as ‘com.hexun.hive.udf.common.HashMurUDF‘;create temporary function udf_url as ‘com.hexun.hive.udf.url.UDFUrl‘;create temporary function url_host as ‘com.hexun.hive.udf.url.UDFHost‘;create temporary function udf_ip as ‘com.hexun.hive.udf.url.UDFIP‘;create temporary function udf_site as ‘com.hexun.hive.udf.url.UDFSite‘;create temporary function udf_UrlDecode as ‘com.hexun.hive.udf.url.UDFUrlDecode‘;create temporary function udtf_url as ‘com.hexun.hive.udf.url.UDTFUrl‘;create temporary function udf_ua as ‘com.hexun.hive.udf.useragent.UDFUA‘;create temporary function udf_ssh as ‘com.hexun.hive.udf.useragent.UDFSSH‘;create temporary function udtf_ua as ‘com.hexun.hive.udf.useragent.UDTFUA‘;create temporary function udf_kw as ‘com.hexun.hive.udf.url.UDFKW‘;create temporary function udf_chdecode as ‘com.hexun.hive.udf.url.UDFChDecode‘;
設定ui的port
--conf spark.ui.port=4075
默覺得4040,會與其它正在跑的任務衝突,這裡改動為4075
設定任務使用的記憶體與CPU資源
--executor-memory 6g --total-executor-cores 45
原來的語句是用hive -e 啟動並執行,改動為spark後速度大加快了。
原來為15min,提升速度後為 45s.
基於sparksql調用shell指令碼運行SQL