Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg

來源:互聯網
上載者:User

標籤:des   style   http   strong   os   art   

In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 40 years. And, in many ways, the first real breakthroughs have only come in the last decade or so, with the Kinect being one of the crown jewels of these recent developments.

One major product of the last 40 years of computer vision research is an open source library called OpenCV (http://opencv.willowgarage.com). 

And, lucky for us, there’s a great library that makes it really easy to use OpenCV with Processing: OpenCV for Processing http://ubaa.net/shared/processing/opencv/). 

The documentation for that library will get you started, and O’Reilly’s book on the topic is the definitive reference: Learning OpenCV by Gary Bradski and Adrian Kaehler (http://shop.oreilly.com/product/9780596516130.do).

OpenCV’s tools are designed to process individual images. While we can use them to analyze recorded footage or live video, very few of them actually account for the movement of objects over time. In the last decade or so,  though, researchers have developed new techniques that use the time dimension of oving images to extract additional information. This has led to a number of breakthrough techniques including camera tracking, panorama stitching, and 3D scene reconstruction. All of these applications are based on the fundamental idea called “feature detection.” The software starts with a single still frame. It detects small pieces of this frame that are particularly recognizable, called “features.” Then, when examining subsequent frames, the software looks for the same features in adjacent

parts of the image to see if they’ve moved. If these features correspond to parts of the world that are themselves fixed (for example, the corner of a windowsill or the edge of fence post), then the movement of the features tells you about the movement of the camera itself. If you track enough of these features, you can combine the multiple frames into a single panorama, calculate the movement of the camera, or if your camera is a depth camera, build a full 3D reconstruction of the entire scene or room.

If you want to learn more about feature tracking and the other advanced techniques that have arisen in recent computer vision research, I highly recommend Computer Vision: Algorithms and Applications by Richard Szeliski of Microsoft Research (http://szeliski.org/Book). It presents a rigorous approach to the contemporary state of the art. The book arose from Szeliski’s teaching work at the University of Washington computer science department and so definitely has some math in it. However, if you’re excited about the field, and you go slowly and use the Internet to fill in the gaps in your background, there’s no better way to really dive deeply into the field.

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.