本篇文章主要介紹了詳解python並發擷取snmp資訊及效能測試,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
python & snmp
用python擷取snmp資訊有多個現成的庫可以使用,其中比較常用的是netsnmp
和pysnmp
兩個庫。網上有較多的關於兩個庫的例子。
本文重點在於如何並發的擷取snmp的資料,即同時擷取多台機器的snmp資訊。
netsnmp
先說netsnmp。python的netsnmp,其實是來自於net-snmp包。
python通過一個c檔案調用net-snmp的介面擷取資料。
因此,在並發擷取多台機器的時候,不能夠使用協程擷取。因為使用協程,在get資料的時候,協程會一直等待net-snmp介面返回資料,而不會像socket使用時那樣在等待資料時把CPU切換給其他協程使用。從這點上來說,使用協程和串列擷取沒有區別。
那麼如何解決並發擷取的問題呢?可以使用線程,多線程擷取(當然也可以使用多進程)。多個線程同時調用net-snmp的介面擷取資料,然後cpu在多個線程之間不停切換。當一個線程擷取一個結果後,可以繼續調用介面擷取下一個snmp資料。
這裡我寫了一個範例程式。首先把所有的host和oid做成任務放到隊列裡,然後啟動多個線程,去執行擷取任務。程式範例如下:
import threadingimport timeimport netsnmpimport Queuestart_time = time.time()hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"]oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"]myq = Queue.Queue()rq = Queue.Queue()#把host和oid組成任務for host in hosts: for oid in oids: myq.put((host,oid))def poll_one_host(): while True: try: #死迴圈從隊列中擷取任務,直到隊列任務為空白 host, oid = myq.get(block=False) session = netsnmp.Session(Version=2, DestHost=host, Community="cluster",Timeout=3000000,Retries=0) var_list = netsnmp.VarList() var_list.append(netsnmp.Varbind(oid)) ret = session.get(var_list) rq.put((host, oid, ret, (time.time() - start_time))) except Queue.Empty: breakthread_arr = []#開啟多線程num_thread = 50for i in range(num_thread): t = threading.Thread(target=poll_one_host, kwargs={}) t.setDaemon(True) t.start() thread_arr.append(t)#等待任務執行完畢for i in range(num_thread): thread_arr[i].join()while True: try: info = rq.get(block=False) print info except Queue.Empty: print time.time() - start_time break
netsnmp除了支援get操作之外,還支援walk操作,即遍曆某個oid。
但是walk使用的時候需要謹慎,以免導致高延時等問題,具體可以參見之前的一篇snmpwalk高延時問題分析的部落格。
pysnmp
pysnmp是用python實現的一套snmp協議的庫。其自身提供了對於非同步支援。
import timeimport Queuefrom pysnmp.hlapi.asyncore import *t = time.time()myq = Queue.Queue()#回呼函數。在有資料返回時觸發def cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx): myq.put((time.time()-t, varBinds))hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"]oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"] snmpEngine = SnmpEngine()#新增工作for oid in oids: for h in hosts: getCmd(snmpEngine, CommunityData('cluster'), UdpTransportTarget((h, 161), timeout=3, retries=0,), ContextData(), ObjectType(ObjectIdentity(oid)), cbFun=cbFun)time1 = time.time() - t#執行非同步擷取snmpsnmpEngine.transportDispatcher.runDispatcher()#列印結果while True: try: info = myq.get(block=False) print info except Queue.Empty: print time1 print time.time() - t break
pysnmp本身只支援最基礎的get和getnext命令,因此如果想使用walk,需要自己進行實現。
效能測試
在同一個環境下,對兩者進行了效能測試。兩者對198個host,10個oid進行採集。
測試組 |
耗時(sec) |
netsnmp(20線程) |
6.252 |
netsnmp(50線程) |
3.269 |
netsnmp(200線程) |
3.265 |
pysnmp |
4.812 |
可以看到netsnmp的採集速度跟線程數有關。當線程數增大到一定程度,採集時間不再縮短。因為開闢線程同樣會消耗時間。而已有的線程已經足夠處理。
pysnmp效能較之略差一下。詳細分析pysnmp在新增工作(執行getCmd時)消耗了約1.2s,之後的採集約消耗3.3秒。
在增加了oid數,在進行實驗。host仍然是198個,oid是42個。
測試組 |
耗時(sec) |
netsnmp(20線程) |
30.935 |
netsnmp(50線程) |
12.914 |
netsnmp(200線程) |
4.044 |
pysnmp |
11.043 |
可以看到差距被進一步拉大。線上程足夠多的情況下,netsnmp的效率要明顯強於pysnmp。
因為二者都支援可以並行採集多個host,從易用性來說,netsnmp更為簡單一些,且netsnmp支援walk功能。本文更加推薦netsnmp。
安裝netsnmp需要安裝net-snmp。如果centos,則使用yum會較為方便。