標籤:mixin nbsp mst more list logs imp tween 標籤
from sklearn.preprocessing import LabelEncoderdef gen_label_encoder(): labels = [‘BB‘, ‘CC‘] le = LabelEncoder() le.fit(labels) print ‘le.classes_‘, le.classes_ for label in le.classes_: print label, le.transform([label])[0] joblib.dump(le, ‘data/label_encoder.h5‘)
LabelEncoder的說明:
1 class LabelEncoder(BaseEstimator, TransformerMixin): 2 """Encode labels with value between 0 and n_classes-1. 3 4 Read more in the :ref:`User Guide <preprocessing_targets>`. 5 6 Attributes 7 ---------- 8 classes_ : array of shape (n_class,) 9 Holds the label for each class.10 11 Examples12 --------13 `LabelEncoder` can be used to normalize labels.14 15 >>> from sklearn import preprocessing16 >>> le = preprocessing.LabelEncoder()17 >>> le.fit([1, 2, 2, 6])18 LabelEncoder()19 >>> le.classes_20 array([1, 2, 6])21 >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS22 array([0, 0, 1, 2]...)23 >>> le.inverse_transform([0, 0, 1, 2])24 array([1, 1, 2, 6])25 26 It can also be used to transform non-numerical labels (as long as they are27 hashable and comparable) to numerical labels.28 29 >>> le = preprocessing.LabelEncoder()30 >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])31 LabelEncoder()32 >>> list(le.classes_)33 [‘amsterdam‘, ‘paris‘, ‘tokyo‘]34 >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS35 array([2, 2, 1]...)36 >>> list(le.inverse_transform([2, 2, 1]))37 [‘tokyo‘, ‘tokyo‘, ‘paris‘]38 39 See also40 --------41 sklearn.preprocessing.OneHotEncoder : encode categorical integer features42 using a one-hot aka one-of-K scheme.43 """
利用sklearn的LabelEncoder對標籤進行數字化編碼