Hadoop 2.x偽分布式環境搭建詳細步驟,hadoop2.x
本文以圖文結合的方式詳細介紹了Hadoop 2.x偽分布式環境搭建的全過程,供大家參考,具體內容如下
1、修改hadoop-env.sh、yarn-env.sh、mapred-env.sh
方法:使用notepad++(beifeng使用者)開啟這三個檔案
添加代碼:export JAVA_HOME=/opt/modules/jdk1.7.0_67
2、修改core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml設定檔
1)修改core-site.xml
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://Hadoop-senior02.beifeng.com:8020</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/modules/hadoop-2.5.0/data</value> </property></configuration>
2)修改hdfs-site.xml
<configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.http-address</name> <value>Hadoop-senior02.beifeng.com:50070</value> </property></configuration>
3)修改yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>Hadoop-senior02.beifeng.com</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.log-aggregation.retain-seconds</name> <value>86400</value> </property></configuration>
4)修改mapred-site.xml
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>0.0.0.0:19888</value> </property></configuration>
3、啟動hdfs
1)格式化namenode:$ bin/hdfs namenode -format
2)啟動namenode:$sbin/hadoop-daemon.sh start namenode
3)啟動datanode:$sbin/hadoop-daemon.sh start datanode
4)hdfs監控web頁面:http://hadoop-senior02.beifeng.com:50070
4、啟動yarn
1)啟動resourcemanager:$sbin/yarn-daemon.sh start resourcemanager
2)啟動nodemanager:sbin/yarn-daemon.sh start nodemanager
3)yarn監控web頁面:http://hadoop-senior02.beifeng.com:8088
5、測試wordcount jar包
1)定位路徑:/opt/modules/hadoop-2.5.0
2)代碼測試:bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input/sort.txt /output6/
運行過程:
16/05/08 06:39:13 INFO client.RMProxy: Connecting to ResourceManager at Hadoop-senior02.beifeng.com/192.168.241.130:8032
16/05/08 06:39:15 INFO input.FileInputFormat: Total input paths to process : 1
16/05/08 06:39:15 INFO mapreduce.JobSubmitter: number of splits:1
16/05/08 06:39:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1462660542807_0001
16/05/08 06:39:16 INFO impl.YarnClientImpl: Submitted application application_1462660542807_0001
16/05/08 06:39:16 INFO mapreduce.Job: The url to track the job: http://Hadoop-senior02.beifeng.com:8088/proxy/application_1462660542807_0001/
16/05/08 06:39:16 INFO mapreduce.Job: Running job: job_1462660542807_0001
16/05/08 06:39:36 INFO mapreduce.Job: Job job_1462660542807_0001 running in uber mode : false
16/05/08 06:39:36 INFO mapreduce.Job: map 0% reduce 0%
16/05/08 06:39:48 INFO mapreduce.Job: map 100% reduce 0%
16/05/08 06:40:04 INFO mapreduce.Job: map 100% reduce 100%
16/05/08 06:40:04 INFO mapreduce.Job: Job job_1462660542807_0001 completed successfully
16/05/08 06:40:04 INFO mapreduce.Job: Counters: 49
3)結果查看:bin/hdfs dfs -text /output6/par*
運行結果:
hadoop 2
jps 1
mapreduce 2
yarn 1
6、MapReduce曆史伺服器
1)啟動:sbin/mr-jobhistory-daemon.sh start historyserver
2)web ui介面:http://hadoop-senior02.beifeng.com:19888
7、hdfs、yarn、mapreduce功能
1)hdfs:Distributed File System,高容錯性的檔案系統,適合部署在廉價的機器上。
hdfs是一個主從結構,分為namenode和datanode,其中namenode是命名空間,datanode是儲存空間,datanode以資料區塊的形式進行儲存,每個資料區塊128M
2)yarn:通用資源管理系統,為上層應用提供統一的資源管理和調度。
yarn分為resourcemanager和nodemanager,resourcemanager負責資源調度和分配,nodemanager負責資料處理和資源
3)mapreduce:MapReduce是一種計算模型,分為Map(映射)和Reduce(歸約)。
map將每一行資料處理後,以索引值對的形式出現,並傳給reduce;reduce將map傳過來的資料進行匯總和統計。
以上就是本文的全部內容,希望對大家的學習有所協助。