hdu2767之強聯通縮點

來源:互聯網
上載者:User

標籤:des   style   blog   class   code   java   

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2768    Accepted Submission(s): 1038


Problem DescriptionConsider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this? 
InputOn the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2. 
OutputPer testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent. 
Sample Input
24 03 21 21 3
 
Sample Output
42
#include <iostream>#include <cstdio>#include <cstdlib>#include <cstring>#include <string>#include <queue>#include <algorithm>#include <map>#include <cmath>#include <iomanip>#define INF 99999999typedef long long LL;using namespace std;const int MAX=20000+10;int n,m,size,top,index,ind,oud;int head[MAX],dfn[MAX],low[MAX],stack[MAX];int mark[MAX],flag[MAX];//dfn表示點u出現的時間,low表示點u能到達所屬環中最早出現的點(記錄的是到達的時間) struct Edge{int v,next;Edge(){}Edge(int V,int NEXT):v(V),next(NEXT){}}edge[50000+10];void Init(int num){for(int i=0;i<=num;++i)head[i]=-1;size=top=index=ind=oud=0;}void InsertEdge(int u,int v){edge[size]=Edge(v,head[u]);head[u]=size++;}void tarjan(int u){if(mark[u])return;dfn[u]=low[u]=++index;stack[++top]=u;mark[u]=1;for(int i=head[u];i != -1;i=edge[i].next){int v=edge[i].v;tarjan(v);if(mark[v] == 1)low[u]=min(low[u],low[v]);//必須點v在棧裡面才行 }if(dfn[u] == low[u]){++ind,++oud;//計算縮點後點的個數,方便計算入度和出度while(stack[top] != u){mark[stack[top]]=-1;low[stack[top--]]=low[u];}mark[u]=-1;--top;}}int main(){int t,u,v;scanf("%d",&t);while(t--){scanf("%d%d",&n,&m);Init(n);for(int i=0;i<m;++i){scanf("%d%d",&u,&v);InsertEdge(u,v);}memset(mark,0,sizeof mark);for(int i=1;i<=n;++i){if(mark[i])continue;tarjan(i);//tarjan用來縮點 }if(ind == 1){cout<<0<<endl;continue;} for(int i=0;i<=n;++i)mark[i]=flag[i]=0;for(int i=1;i<=n;++i){for(int j=head[i];j != -1;j=edge[j].next){v=edge[j].v;if(low[i] == low[v])continue;if(mark[low[i]] == 0)--oud;//mark標記點u是否有出度if(flag[low[v]] == 0)--ind;//flag標記點u是否有入度mark[low[i]]=1,flag[low[v]]=1; }}printf("%d\n",max(oud,ind));}return 0;}



相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.