標籤:
clj在某場hihoCoder比賽中的一道題,表示clj的數學題實在6,這道圖論貌似還算可以。。。
題目連結:http://hihocoder.com/problemset/problem/1167
由於是中文題目,題意不再贅述。
對於任意兩條小精靈的活動路徑a和b,二者相交的判斷條件為b的兩個端點的LCA在a的路徑上;那麼我們可以首先將每個活動路徑端點的LCA離線預先處理出來,對每個節點LCA值+1。
然後以某個節點(我選擇的是節點1)為根進行深搜,算出一條從節點1到節點x的LCA值和,那麼任意路徑a(假設其兩端點分別是A和B)上的節點個數就是sum[A] + sum[B] - 2 * sum[LCA(A,B)]。
最後,對於某些點,如果它是不止一條路徑的LCA,那麼我們只需要對最終答案乘以C(LCAnum, 2)的組合數就好。
【PS:clj給出的題解中,採用了點分治+LCA的方式,雖然看懂了題意,但是表示對遞迴分治之後的路徑,如何求出其上的LCAnum,並沒有多好的想法,還望巨巨能指點一下,Thx~】
AC代碼:
#include <cstdio>#include <iostream>#include <cstring>using namespace std;typedef long long LL;#define MAXN 100010struct Edge { int to, next;} edge[MAXN << 1];struct Node { int to, next, num;} Query[MAXN << 1];struct node { int u, v, lca;} input[MAXN];int totEdge, totQuery, n, m;int headEdge[MAXN], headQuery[MAXN];int ancestor[MAXN], father[MAXN], LCAnum[MAXN], sum[MAXN];bool vis[MAXN];void addEdge(int from, int to) { edge[totEdge].to = to; edge[totEdge].next = headEdge[from]; headEdge[from] = totEdge++;}void addQuery(int from, int to, int x) { Query[totQuery].to = to; Query[totQuery].num = x; Query[totQuery].next = headQuery[from]; headQuery[from] = totQuery++;}void init() { memset(headEdge, -1, sizeof(headEdge)); memset(headQuery, -1, sizeof(headQuery)); memset(father, -1, sizeof(father)); memset(vis, false, sizeof(vis)); memset(sum, 0, sizeof(sum)); memset(LCAnum, 0, sizeof(LCAnum)); totEdge = totQuery = 0;}int find_set(int x) { if(x == father[x]) return x; else return father[x] = find_set(father[x]);}void union_set(int x, int y) { x = find_set(x); y = find_set(y); if(x != y) father[y] = x;}void Tarjan(int u) { father[u] = u; for(int i = headEdge[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if(father[v] != -1) continue; Tarjan(v); union_set(u, v); } for(int i = headQuery[u]; i != -1; i = Query[i].next) { int v = Query[i].to; if(father[v] == -1) continue; input[Query[i].num].lca = find_set(v); }}void DFS(int u, int pre) { vis[u] = 1; sum[u] = sum[pre] + LCAnum[u]; for(int i = headEdge[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if(vis[v]) continue; DFS(v, u); }}int main() { init(); scanf("%d%d", &n, &m); for(int i = 0; i < n - 1; i++) { int a, b; scanf("%d%d", &a, &b); addEdge(a, b); addEdge(b, a); } for(int i = 0; i < m; i++) { int a, b; scanf("%d%d", &a, &b); input[i].u = a, input[i].v = b; addQuery(a, b, i); addQuery(b, a, i); } Tarjan(1); for(int i = 0; i < m; i++) LCAnum[input[i].lca]++; DFS(1, 0); LL ans = 0; for(int i = 0; i < m; i++) { ans += (sum[input[i].u] + sum[input[i].v] - 2 * sum[input[i].lca]); } for(int i = 1; i <= n; i++) { ans += (LL)LCAnum[i] * (LCAnum[i] - 1) / 2; } printf("%lld\n", ans); return 0;}
hihoCoder 1167高等理論電腦科學(LCA)