國外人工智慧界牛人首頁 http://people.cs.uchicago.edu/~niyogi/
http://www.cs.uchicago.edu/people/
http://pages.cs.wisc.edu/~jerryzhu/
http://www.kyb.tuebingen.mpg.de/~chapelle
http://people.cs.uchicago.edu/~xiaofei/
http://www.cs.uiuc.edu/homes/dengcai2/
http://www.kyb.mpg.de/~bs
http://research.microsoft.com/~denzho/
http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item5 (resources for the book of the introduction of data mining by Pang-ning Tan et.al. )(國內已經有相應的中文版)
http://www.cs.toronto.edu/~roweis/lle/publications.html (lle演算法原始碼及其相關論文)
http://dataclustering.cse.msu.edu/index.html#software(data clustering)
http://www.cs.toronto.edu/~roweis/ (裡面有好多資源)
http://www.cse.msu.edu/~lawhiu/ (manifold learning)
http://www.math.umn.edu/~wittman/mani/ (manifold learning demo in matlab)
http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/INDEX.HTM (manifold learning in matlab)
http://videolectures.net/mlss05us_belkin_sslmm/ (semi supervised learning with manifold method by Belkin)
http://isomap.stanford.edu/ (isomap首頁)
http://web.mit.edu/cocosci/josh.html MIT TENENBAUM J B首頁
http://web.engr.oregonstate.edu/~tgd/ (國際著名的人工智慧專家 Thomas G. Dietterich)
http://www.cs.berkeley.edu/~jordan/ (MIchael I.Jordan)
http://www.cs.cmu.edu/~awm/ (Andrew W. Moore's homepage)
http://learning.cs.toronto.edu/ (加拿大多倫多大學機器學習小組)
http://www.cs.cmu.edu/~tom/ (Tom Mitchell,裡面有與教材匹配的slide。)
Kernel Methods |
Alexander J. Smola Maximum Mean Discrepancy (MMD), Hilbert-Schmidt Independence Criterion (HSIC) Bernhard Sch?lkopf Kernel PCA James T Kwok Pre-Image, Kernel Learning, Core Vector Machine(CVM) Jieping Ye Kernel Learning, Linear Discriminate Analysis, Dimension Deduction |
Multi-Task Learning |
Andreas Argyriou Multi-Task Feature Learning Charles A. Micchelli Multi-Task Feature Learning, Multi-Task Kernel Learning Massimiliano Pontil Multi-Task Feature Learning Yiming Ying Multi-Task Feature Learning, Multi-Task Kernel Learning |
Semi-supervised Learning |
Partha Niyogi Manifold Regularization, Laplacian Eigenmaps Mikhail Belkin Manifold Regularization, Laplacian Eigenmaps Vikas Sindhwani Manifold Regularization Xiaojin Zhu Graph-based Semi-supervised Learning |
Multiple Instance Learning |
Sally A Goldman EM-DD, DD-SVM, Multiple Instance Semi Supervised Learning(MISS) |
Dimensionality Reduction |
Neil Lawrence Gaussian Process Latent Variable Models (GPLVM) Lawrence K. Saul Maximum Variance Unfolding(MVU), Semidefinite Embedding(SDE) |
Machine Learning |
Michael I. Jordan Graphical Models John Lafferty Diffusion Kernels, Graphical Models Daphne Koller Logic, Probability Zhang Tong Theoretical Analysis of Statistical Algorithms, Multi-task Learning, Graph-based Semi-supervised Learning Zoubin Ghahramani Bayesian approaches to machine learning Machine Learning @ Toronto |
Statitiscal Machine Learning & Optimization |
Jerome H Friedman GLasso, Statistical view of AdaBoost, Greedy Function Approximation Thevor Hastie Lasso Stephen Boyd Convex Optimization C.J Lin Libsvm |
http://www.dice.ucl.ac.be/mlg/
半監督流形學習(流形正則化)
http://manifold.cs.uchicago.edu/
模式識別和神經網路工具箱
http://www.ncrg.aston.ac.uk/netlab/index.php
機器學習開原始碼
http://mloss.org/software/tags/large-scale-learning/
統計學開原始碼
http://www.wessa.net/
matlab各種工具箱連結
http://www.tech.plym.ac.uk/spmc/links/matlab/matlab_toolbox.html
統計學學習經典線上教材
http://www.statistics4u.info/
機器學習開源原始碼
http://mloss.org/software/language/matlab/
From:http://tzczsq.blog.163.com/blog/static/22603058201102602452399/
http://www.cnblogs.com/skyseraph/