Java同步機制淺談―synchronized
來源:互聯網
上載者:User
Java對多線程的支援與同步機制似乎使用了synchronized關鍵字就可以輕鬆地解決多線程共用資料同步問題.到底如何?――還得對synchronized關鍵字的作用進行深入瞭解才可定論.
總的說來,synchronized關鍵字可以作為函數的修飾符,也可作為函數內的語句,也就是平時說的同步方法和同步語句塊.如果再細的分類,synchronized可作用於instance變數,object reference(對象引用),static函數和class literals(類名稱字面常量)身上.
在進一步闡述之前,我們需要明確幾點:
A.無論synchronized關鍵字加在方法上還是對象上,它取得的鎖都是對象,而不是把一段代碼或函數當作鎖――而且同步方法很可能還會被其他線程的對象訪問.
B.每個對象只有一個鎖(lock)與之相關聯.
C.實現同步是要很大的系統開銷作為代價的,甚至可能造成死結,所以盡量避免無謂的同步控制.
接著來討論synchronized用到不同地方對代碼產生的影響:
假設P1,P2是同一個類的不同對象,這個類中定義了以下幾種情況的同步塊或同步方法,P1,P2就都可以調用它們.
1. 把synchronized當作函數修飾符時,範例程式碼如下:
Public synchronized void methodAAA()
{
//….
}
這也就是同步方法,那這時synchronized鎖定的是哪個對象呢?它鎖定的是調用這個同步方法對象.也就是說,當一個對象P1在不同的線程中執行這個同步方法時,它們之間會形成互斥,達到同步的效果.但是這個對象所屬的Class所產生的另一對象P2卻可以任意調用這個被加了synchronized關鍵字的方法.
上邊的範例程式碼等同於如下代碼:
public void methodAAA()
{
synchronized (this) // (1)
{
//…..
}
}
(1)處的this指的是什麼呢?它指的就是調用這個方法的對象,如P1.可見同步方法實質是將synchronized作用於object reference.――那個拿到了P1對象鎖的線程,才可以調用P1的同步方法,而對P2而言,P1這個鎖與它毫不相干,程式也可能在這種情形下擺脫同步機制的控制,造成資料混亂:(
2.同步塊,範例程式碼如下:
public void method3(SomeObject so)
{
synchronized(so)
{
//…..
}
}
這時,鎖就是so這個對象,誰拿到這個鎖誰就可以運行它所控制的那段代碼.當有一個明確的對象作為鎖時,就可以這樣寫程式,但當沒有明確的對象作為鎖,只是想讓一段代碼同步時,可以建立一個特殊的instance變數(它得是一個對象)來充當鎖:
class Foo implements Runnable
{
private byte[] lock = new byte[0]; // 特殊的instance變數
Public void methodA()
{
synchronized(lock) { //… }
}
//…..
}
注:零長度的byte數組對象建立起來將比任何對象都經濟――查看編譯後的位元組碼:產生零長度的byte[]對象只需3條作業碼,而Object lock = new Object()則需要7行作業碼.
3.將synchronized作用於static 函數,範例程式碼如下:
Class Foo
{
public synchronized static void methodAAA() // 同步的static 函數
{
//….
}
public void methodBBB()
{
synchronized(Foo.class) // class literal(類名稱字面常量)
}
}
代碼中的methodBBB()方法是把class literal作為鎖的情況,它和同步的static函數產生的效果是一樣的,取得的鎖很特別,是當前調用這個方法的對象所屬的類(Class,而不再是由這個Class產生的某個具體對象了).
記得在《Effective Java》一書中看到過將 Foo.class和 P1.getClass()用於作同步鎖還不一樣,不能用P1.getClass()來達到鎖這個Class的目的.P1指的是由Foo類產生的對象.
可以推斷:如果一個類中定義了一個synchronized的static函數A,也定義了一個synchronized 的instance函數B,那麼這個類的同一對象Obj在多線程中分別訪問A和B兩個方法時,不會構成同步,因為它們的鎖都不一樣.A方法的鎖是Obj這個對象,而B的鎖是Obj所屬的那個Class.
小結如下:
搞清楚synchronized鎖定的是哪個對象,就能協助我們設計更安全的多線程程式.
還有一些技巧可以讓我們對共用資源的同步訪問更加安全:
1. 定義private 的instance變數+它的 get方法,而不要定義public/protected的instance變數.如果將變數定義為public,對象在外界可以繞過同步方法的控制而直接取得它,並改動它.這也是JavaBean的標準實現方式之一.
2. 如果instance變數是一個對象,如數組或ArrayList什麼的,那上述方法仍然不安全,因為當外界對象通過get方法拿到這個instance對象的引用後,又將其指向另一個對象,那麼這個private變數也就變了,豈不是很危險. 這個時候就需要將get方法也加上synchronized同步,並且,只返回這個private對象的clone()――這樣,調用端得到的就是對象副本的引用了.
對synchronized(this)的一些理解
一,當兩個並發線程訪問同一個對象object中的這個synchronized(this)同步代碼塊時,一個時間內只能有一個線程得到執行.另一個線程必須等待當前線程執行完這個代碼塊以後才能執行該代碼塊.
二,然而,當一個線程訪問object的一個synchronized(this)同步代碼塊時,另一個線程仍然可以訪問該object中的非synchronized(this)同步代碼塊.
三,尤其關鍵的是,當一個線程訪問object的一個synchronized(this)同步代碼塊時,其他線程對object中所有其它synchronized(this)同步代碼塊的訪問將被阻塞.
四,第三個例子同樣適用其它同步代碼塊.也就是說,當一個線程訪問object的一個synchronized(this)同步代碼塊時,它就獲得了這個object的對象鎖.結果,其它線程對該object對象所有同步代碼部分的訪問都被暫時阻塞.
五,以上規則對其它對象鎖同樣適用.
舉例說明:
一,當兩個並發線程訪問同一個對象object中的這個synchronized(this)同步代碼塊時,一個時間內只能有一個線程得到執行.另一個線程必須等待當前線程執行完這個代碼塊以後才能執行該代碼塊.
package ths;
public class Thread1 implements Runnable {
public void run() {
synchronized(this) {
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + " synchronized loop " + i);
}
}
}
public static void main(String[] args) {
Thread1 t1 = new Thread1();
Thread ta = new Thread(t1, "A");
Thread tb = new Thread(t1, "B");
ta.start();
tb.start();
}
}
結果:
A synchronized loop 0
A synchronized loop 1
A synchronized loop 2
A synchronized loop 3
A synchronized loop 4
B synchronized loop 0
B synchronized loop 1
B synchronized loop 2
B synchronized loop 3
B synchronized loop 4
二,然而,當一個線程訪問object的一個synchronized(this)同步代碼塊時,另一個線程仍然可以訪問該object中的非synchronized(this)同步代碼塊.
package ths;
public class Thread2 {
public void m4t1() {
synchronized(this) {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
}
public void m4t2() {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
public static void main(String[] args) {
final Thread2 myt2 = new Thread2();
Thread t1 = new Thread(
new Runnable() {
public void run() {
myt2.m4t1();
}
}, "t1"
);
Thread t2 = new Thread(
new Runnable() {
public void run() {
myt2.m4t2();
}
}, "t2"
);
t1.start();
t2.start();
}
}
結果:
t1 : 4
t2 : 4
t1 : 3
t2 : 3
t1 : 2
t2 : 2
t1 : 1
t2 : 1
t1 : 0
t2 : 0
三,尤其關鍵的是,當一個線程訪問object的一個synchronized(this)同步代碼塊時,其他線程對object中所有其它synchronized(this)同步代碼塊的訪問將被阻塞.
//修改Thread2.m4t2()方法:
public void m4t2() {
synchronized(this) {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
}
結果:
t1 : 4
t1 : 3
t1 : 2
t1 : 1
t1 : 0
t2 : 4
t2 : 3
t2 : 2
t2 : 1
t2 : 0
四,第三個例子同樣適用其它同步代碼塊.也就是說,當一個線程訪問object的一個synchronized(this)同步代碼塊時,它就獲得了這個object的對象鎖.結果,其它線程對該object對象所有同步代碼部分的訪問都被暫時阻塞.
//修改Thread2.m4t2()方法如下:
public synchronized void m4t2() {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
結果:
t1 : 4
t1 : 3
t1 : 2
t1 : 1
t1 : 0
t2 : 4
t2 : 3
t2 : 2
t2 : 1
t2 : 0
五,以上規則對其它對象鎖同樣適用:
package ths;
public class Thread3 {
class Inner {
private void m4t1() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t1()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
private void m4t2() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
}
private void m4t1(Inner inner) {
synchronized(inner) { //使用對象鎖
inner.m4t1();
}
}
private void m4t2(Inner inner) {
inner.m4t2();
}
public static void main(String[] args) {
final Thread3 myt3 = new Thread3();
final Inner inner = myt3.new Inner();
Thread t1 = new Thread(
new Runnable() {
public void run() {
myt3.m4t1(inner);
}
}, "t1"
);
Thread t2 = new Thread(
new Runnable() {
public void run() {
myt3.m4t2(inner);
}
}, "t2"
);
t1.start();
t2.start();
}
}
結果:
儘管線程t1獲得了對Inner的對象鎖,但由於線程t2訪問的是同一個Inner中的非同步部分.所以兩個線程互不干擾.
t1 : Inner.m4t1()=4
t2 : Inner.m4t2()=4
t1 : Inner.m4t1()=3
t2 : Inner.m4t2()=3
t1 : Inner.m4t1()=2
t2 : Inner.m4t2()=2
t1 : Inner.m4t1()=1
t2 : Inner.m4t2()=1
t1 : Inner.m4t1()=0
t2 : Inner.m4t2()=0
現在在Inner.m4t2()前面加上synchronized:
private synchronized void m4t2() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
結果:
儘管線程t1與t2訪問了同一個Inner對象中兩個毫不相關的部分,但因為t1先獲得了對Inner的對象鎖,所以t2對Inner.m4t2()的訪問也被阻塞,因為m4t2()是Inner中的一個同步方法.
t1 : Inner.m4t1()=4
t1 : Inner.m4t1()=3
t1 : Inner.m4t1()=2
t1 : Inner.m4t1()=1
t1 : Inner.m4t1()=0
t2 : Inner.m4t2()=4
t2 : Inner.m4t2()=3
t2 : Inner.m4t2()=2
t2 : Inner.m4t2()=1
t2 : Inner.m4t2()=0