標籤:style class blog code java http
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
https://oj.leetcode.com/problems/maximum-subarray/
思路1:Kadane演算法,複雜度O(n)。
思路2:分治。對於每次遞迴,將數組分半,最大和可能存在
- 完全在左面部分(遞迴求解)
- 完全在右面部分(遞迴求解)
- 橫跨左右兩個部分(從中間(必須包含中間元素,否則左右無法串連)向兩邊加,記錄最大值)
注意點:注意負數的處理,此題最大值為負數時依然返回最大的負數,也有題目負數時要求返回0。注意兩種情況下最大值的初始化等細節的區別。
思路1代碼:
public class Solution {public int maxSubArray(int[] A) {int n = A.length;int i;int maxSum = A[0];int thisSum = 0;for (i = 0; i < n; i++) {thisSum += A[i];if (thisSum > maxSum)maxSum = thisSum;if (thisSum < 0)thisSum = 0;}return maxSum;}public static void main(String[] args) {System.out.println(new Solution().maxSubArray(new int[] { -2, 1, -3, 4,-1, 2, 1, -5, 4 }));}}
思路2代碼:
public class Solution { public int maxSubArray(int[] A) { return maxSub(A, 0, A.length - 1); } private int maxSub(int[] a, int left, int right) { if (left == right) return a[left]; int mid = (left + right) / 2; int maxLeft = maxSub(a, left, mid); int maxRight = maxSub(a, mid + 1, right); int leftHalf = 0, leftHalfMax = Integer.MIN_VALUE; int rightHalf = 0, rightHalfMax = Integer.MIN_VALUE; for (int i = mid; i >= left; i--) { leftHalf += a[i]; if (leftHalf > leftHalfMax) leftHalfMax = leftHalf; } for (int i = mid + 1; i <= right; i++) { rightHalf += a[i]; if (rightHalf > rightHalfMax) rightHalfMax = rightHalf; } return Math.max(Math.max(maxLeft, maxRight), (leftHalfMax + rightHalfMax)); } public static void main(String[] args) { System.out.println(new Solution().maxSubArray(new int[] { -2, -1, -3, -2, -5 })); }}參考:
Data Structures and Algorithm Analysis in C
http://blog.csdn.net/xshengh/article/details/12708291