machine learning in coding(python):使用xgboost構建預測模型

來源:互聯網
上載者:User

標籤:scikit-learn   機器學習   xgboost   machine learning in   

接上篇:http://blog.csdn.net/mmc2015/article/details/47304591



def xgboost_pred(train,labels,test):params = {}params["objective"] = "reg:linear"params["eta"] = 0.005params["min_child_weight"] = 6params["subsample"] = 0.7params["colsample_bytree"] = 0.7params["scale_pos_weight"] = 1params["silent"] = 1params["max_depth"] = 9        plst = list(params.items())#Using 5000 rows for early stopping. offset = 4000num_rounds = 10000xgtest = xgb.DMatrix(test)#create a train and validation dmatrices xgtrain = xgb.DMatrix(train[offset:,:], label=labels[offset:])xgval = xgb.DMatrix(train[:offset,:], label=labels[:offset])#train using early stopping and predictwatchlist = [(xgtrain, 'train'),(xgval, 'val')]model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=120)preds1 = model.predict(xgtest,ntree_limit=model.best_iteration)#reverse train and labels and use different 5k for early stopping. # this adds very little to the score but it is an option if you are concerned about using all the data. train = train[::-1,:]labels = np.log(labels[::-1])xgtrain = xgb.DMatrix(train[offset:,:], label=labels[offset:])xgval = xgb.DMatrix(train[:offset,:], label=labels[:offset])watchlist = [(xgtrain, 'train'),(xgval, 'val')]model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=120)preds2 = model.predict(xgtest,ntree_limit=model.best_iteration)#combine predictions#since the metric only cares about relative rank we don't need to averagepreds = (preds1)*1.4 + (preds2)*8.6return preds

(code from kaggle)



代碼具體分析有時間寫,歡迎吐槽。。。。



著作權聲明:本文為博主原創文章,未經博主允許不得轉載。

machine learning in coding(python):使用xgboost構建預測模型

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.