標籤:
block 有什麼意義,特點等等,這些東西,實在是太複雜了,這裡只是簡單的總結一下block的記憶體管理。而且也僅僅限於objective-C的部分
Block memory
block 的記憶體管理,應該是最頭疼的地方,就用這個來自WWDC的例子來解釋一下吧。
當程式運行到這裡時,stack 空間中有 shared 變數和 captured 變數。
這裡可以看出,__block 變數開始是處於stack上的。
當程式運行到這裡時,stack 空間中有 shared 變數,captured 變數和block1。
這裡可以看出,block 類型的變數開始時也是處在stack上的。
當程式運行到這裡時,stack 空間中有 shared 變數,captured 變數和block1。
這裡值得注意的就是當我們直接修改stack 上的captured變數時,block1中的captured變數仍然是原來的數值10。事實上,從const 我們就可以看出,block1中的captured變數是不能被修改的而且是從stack原有變數的一個const 拷貝。在block1中訪問的captured變數是const拷貝的,也就是說block1中captured = 10,而不是原有的stack上的值 20。當然,在block1中,我們也不能修改captured變數。
Copy block
block在一開始是處在stack上的,這是為了考慮到效率的原因,但是,有時候是需要block的生命週期長於一開始的stack,這時,我們就通過copy block 來將block複製到heap。
當程式執行完 block2 = [block1 copy];時,__block 類型變數shared,被複製到了heap中,很顯然,shared變數需要被block和block2共用(當然還有stack也要共用),而block2被移動到heap中,很可能生命週期會長於stack,所以,shared也被複製到了heap中。而block2中的captured 也被複製到了heap中。
當程式執行完 block3 = [block2 copy];時, 我們看到的是,block2 和block3 其實指向的是同一片記憶體空間。事實上,block的資料結構中,儲存了引用計數,而對於copy到heap中的block 再copy時,行為同普通對象retain一樣,會使引用計數+1。那麼如果我們對[block retain]會如何呢? 實際上什麼都沒有發生,至少在現在的runtime版本下。因為retain中,不僅有引用計數+1在,而且retain的傳回值,必須同返回調用對象的地址一樣,而block的地址是可能變化的(stack or heap),所以,這裡retain的行為幾乎是被忽略掉的。
當heap中的block變數先於stack被銷毀時,如調用 [block2 release]; [block3 release];,heap中的block2,block3 由於引用計數為0 而被銷毀,而 __block 變數shared則還在heap中,因為stack還要使用,block1 也要使用。
當heap中的block變數晚於stack時,顯然,stack 被清除,function中也啥都沒了。
最後,當block2 和block3 都被release之後。則恢複到最初狀態
block details
當我們寫出一個Block literal expression
^ { printf("hello world\n"); }
事實上,編譯器為我們產生了如下結構
struct __block_literal_1 {
void *isa;
int flags;
int reserved;
void (*invoke)(struct __block_literal_1 *);
struct __block_descriptor_1 *descriptor;
};void __block_invoke_1(struct __block_literal_1 *_block) {
printf("hello world\n");
}static struct __block_descriptor_1 {
unsigned long int reserved;
unsigned long int Block_size;
} __block_descriptor_1 = { 0, sizeof(struct __block_literal_1)}; 當Block literal expression 使用時 __block_literal_1 則會被初始化為:struct __block_literal_1 _block_literal = {
&_NSConcreteStackBlock,
(1<<29), <uninitialized>,
__block_invoke_1,
&__block_descriptor_1
};
下一個例子
int x = 10;
void (^vv)(void) = ^{printf("x is %d\n", x);};
x = 11;
vv();
編譯器會產生如下結構
struct __block_literal_2{
void *isa;
int flags;
int reserved;
void (*invoke)(struct __block_literal_2 *);
struct __block_descriptor_2 *descriptor;
const int x;
};
void __block_invoke_2(struct __block_literal_2 *_block){
printf("x is %d\n", _block->x);
}
void struct __block_descriptor_2{
unsigned long int reserved;
unsigned long int block_size;
}__block_descriptor_2 = {0, sizeof(struct __block_literal_2)};
struct __block_literal_2 __block_literal_2 = {
&NSConcreteStackBlock,
(1<<29),
__block_invoke_2,
&__block_descriptor_2,
x
};
block中使用的普通變數(int, char *)匯入是const copy。普通對象則會retain。__block 類型變數則什麼不做,只是儲存一個指標,全域變數也只是儲存一個簡單的指標。
當然,block 可能也會嵌套block,那麼又會是什麼樣子?其實不複雜,複雜的只是增加了複製函數,和釋放函數,這一點很像C++的拷貝建構函式,在必要時產生。
void (^existingBlock)(void) = …;
void (^vv)(void) = ^{existingBlock();};
vv();
struct __block_literal_3{
...;//esisting block
};
struct __block_literal_4{
void *isa;
int flags;
int reserved;
void (*invoke)(struct __block_literal_4 *);
struct __block_literal_3 *const existingBlock;
};
void __block_invoke_4(struct __block_literal_3 *__block) {
__block->existingBlock->invoke(__block->existingBlock);
}
void __block_copy_4(struct __block_literal_4 *dst, struct __block_literal_4 *src) {
//_Block_copy_assign(&dst->existingBlock, src->existingBlock, 0);
_Block_object_assign(&dst->existingBlock, src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}
void __block_dispose_4(struct __block_literal_4 *src) {
// was _Block_destroy
_Block_object_dispose(src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}
static struct __block_descriptor_4 {
unsigned long int reserved;
unsigned long int Block_size;
void (*copy_helper)(struct __block_literal_4 *dst, struct __block_literal_4 *src);
void (*dispose_helper)(struct __block_literal_4 *);
} __block_descriptor_4 = {
0,
sizeof(struct __block_literal_4),
__block_copy_4,
__block_dispose_4,
};
初始化
struct __block_literal_4 _block_literal = {
&_NSConcreteStackBlock,
(1<<25)|(1<<29), <uninitialized>
__block_invoke_4,
& __block_descriptor_4
existingBlock,
};
__block storage variables
__block 變數是一種很特殊的資料類型,有自己的特有的資料結構
struct _block_byref_xxxx {
void *isa;
struct _block_byref_xxxx *forwarding;
int flags; //refcount;
int size;
// helper functions called via Block_copy() and Block_release()
void (*byref_keep)(void *dst, void *src); //需要時被產生
void (*byref_dispose)(void *);//需要時被產生
typeof(marked_variable) marked_variable;
};
看看__block 類型變數的使用
int __block i = 10;
i = 11;
struct _block_byref_i {
void *isa;
struct _block_byref_i *forwarding;
int flags; //refcount;
int size;
int captured_i;
} i = { NULL, &i, 0, sizeof(struct _block_byref_i), 10 };
i.forwarding->captured_i = 11;
顯然,當block中增加了__block 類型變數之後,嵌套block 的拷貝函數也會增加對__block 變數的複製。
__block void (voidBlock)(void) = blockA;
voidBlock = blockB;
struct _block_byref_voidBlock {
void *isa;
struct _block_byref_voidBlock *forwarding;
int flags; //refcount;
int size;
void (*byref_keep)(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src);
void (*byref_dispose)(struct _block_byref_voidBlock *);
void (^captured_voidBlock)(void);
};
void _block_byref_keep_helper(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
//_Block_copy_assign(&dst->captured_voidBlock, src->captured_voidBlock, 0);
_Block_object_assign(&dst->captured_voidBlock, src->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
}
void _block_byref_dispose_helper(struct _block_byref_voidBlock *param) {
//_Block_destroy(param->captured_voidBlock, 0);
_Block_object_dispose(param->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER)}
struct _block_byref_voidBlock voidBlock = {( .forwarding=&voidBlock, .flags=(1<<25), .size=sizeof(struct _block_byref_voidBlock *),
.byref_keep=_block_byref_keep_helper, .byref_dispose=_block_byref_dispose_helper,
.captured_voidBlock=blockA )};
voidBlock.forwarding->captured_voidBlock = blockB;
block中,引入了__block 會是什麼情況
int __block i = 2;
functioncall(^{ i = 10; });
struct _block_byref_i {
void *isa; // set to NULL
struct _block_byref_voidBlock *forwarding;
int flags; //refcount;
int size;
void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
void (*byref_dispose)(struct _block_byref_i *);
int captured_i;
};
struct __block_literal_5 {
void *isa;
int flags;
int reserved;
void (*invoke)(struct __block_literal_5 *);
struct __block_descriptor_5 *descriptor;
struct _block_byref_i *i_holder;
};
void __block_invoke_5(struct __block_literal_5 *_block) {
_block->i_holder->forwarding->captured_i = 10;
}
void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
_Block_object_assign(&dst->i_holder, src->i_holder, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}
void __block_dispose_5(struct __block_literal_5 *src) {
_Block_object_dispose(src->i_holder, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}
static struct __block_descriptor_5 {
unsigned long int reserved;
unsigned long int Block_size;
void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
void (*dispose_helper)(struct __block_literal_5 *);
} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5) __block_copy_5, __block_dispose_5 };
struct _block_byref_i i = {( .forwarding=&i, .flags=0, .size=sizeof(struct _block_byref_i) )};
struct __block_literal_5 _block_literal = {
&_NSConcreteStackBlock,
(1<<25)|(1<<29), <uninitialized>,
__block_invoke_5,
&__block_descriptor_5,
2,
};
以上內容摘自http://www.cnblogs.com/studentdeng/archive/2012/02/03/2336863.html 不會開機的男孩所寫的, 對於block 認為這個寫的很詳細了,所以直接借鑒了!
Objective-C Block方法