opencv_haystack =cv2.imread('woman2.bmp')opencv_needle =cv2.imread('face.bmp')ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)# build feature detector and descriptor extractorhessian_threshold = 85detector = cv2.SURF(hessian_threshold)(hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)(nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)# extract vectors of size 64 from raw descriptors numpy arraysrowsize = len(hdescriptors) / len(hkeypoints)if rowsize > 1: hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize)) nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize)) #print hrows.shape, nrows.shapeelse: hrows = numpy.array(hdescriptors, dtype = numpy.float32) nrows = numpy.array(ndescriptors, dtype = numpy.float32) rowsize = len(hrows[0])# kNN training - learn mapping from hrow to hkeypoints indexsamples = hrowsresponses = numpy.arange(len(hkeypoints), dtype = numpy.float32)#print len(samples), len(responses)knn = cv2.KNearest()knn.train(samples,responses)# retrieve index and value through enumerationcount = 1for i, descriptor in enumerate(nrows): descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize)) #print i, descriptor.shape, samples[0].shape retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1) res, dist = int(results[0][0]), dists[0][0] #print res, dist if dist < 0.1: count = count+1 # draw matched keypoints in red color color = (0, 0, 255)# else:# # draw unmatched in blue color# color = (255, 0, 0) # draw matched key points on haystack image x,y = hkeypoints[res].pt center = (int(x),int(y)) cv2.circle(opencv_haystack,center,2,color,-1) # draw matched key points on needle image x,y = nkeypoints[i].pt center = (int(x),int(y)) cv2.circle(opencv_needle,center,2,color,-1)cv.ShowImage("Input Image", opencv_haystack)cv.waitKey(0)cv.ShowImage("The match Result", opencv_needle)cv.waitKey(0)print countif count>40: print "Yes Success!"else: print "False Face!"#cv2.waitKey(0)#cv2.destroyAllWindows()
編譯環境Opencv2.4 Python2.7
這個大家注意就好了。