這次給大家帶來pandas+dataframe實現行列選擇與切片操作,pandas+dataframe實現行列選擇與切片操作的注意事項有哪些,下面就是實戰案例,一起來看一下。
SQL中的select是根據列的名稱來選取;Pandas則更為靈活,不但可根據列名稱選取,還可以根據列所在的position(數字,在第幾行第幾列,注意pandas行列的position是從0開始)選取。相關函數如下:
1)loc,基於列label,可選取特定行(根據行index);
2)iloc,基於行/列的position;
3)at,根據指定行index及列label,快速定位DataFrame的元素;
4)iat,與at類似,不同的是根據position來定位的;
5)ix,為loc與iloc的混合體,既支援label也支援position;
執行個體
import pandas as pdimport numpy as npdf = pd.DataFrame({'total_bill': [16.99, 10.34, 23.68, 23.68, 24.59], 'tip': [1.01, 1.66, 3.50, 3.31, 3.61], 'sex': ['Female', 'Male', 'Male', 'Male', 'Female']})# data type of columnsprint df.dtypes# indexesprint df.index# return pandas.Indexprint df.columns# each row, return array[array]print df.valuesprint df
sex objecttip float64total_bill float64dtype: objectRangeIndex(start=0, stop=5, step=1)Index([u'sex', u'tip', u'total_bill'], dtype='object')[['Female' 1.01 16.99] ['Male' 1.66 10.34] ['Male' 3.5 23.68] ['Male' 3.31 23.68] ['Female' 3.61 24.59]] sex tip total_bill0 Female 1.01 16.991 Male 1.66 10.342 Male 3.50 23.683 Male 3.31 23.684 Female 3.61 24.59
print df.loc[1:3, ['total_bill', 'tip']]print df.loc[1:3, 'tip': 'total_bill']print df.iloc[1:3, [1, 2]]print df.iloc[1:3, 1: 3]
total_bill tip1 10.34 1.662 23.68 3.503 23.68 3.31 tip total_bill1 1.66 10.342 3.50 23.683 3.31 23.68 tip total_bill1 1.66 10.342 3.50 23.68 tip total_bill1 1.66 10.342 3.50 23.68
錯誤的表示:
print df.loc[1:3, [2, 3]]#.loc僅支援列名操作
KeyError: 'None of [[2, 3]] are in the [columns]'
print df.loc[[2, 3]]#.loc可以不加列名,則是行選擇
sex tip total_bill2 Male 3.50 23.683 Male 3.31 23.68
print df.iloc[1:3]#.iloc可以不加第幾列,則是行選擇
sex tip total_bill1 Male 1.66 10.342 Male 3.50 23.68
print df.iloc[1:3, 'tip': 'total_bill']
TypeError: cannot do slice indexing on <class 'pandas.indexes.base.Index'> with these indexers [tip] of <type 'str'>
print df.at[3, 'tip']print df.iat[3, 1]print df.ix[1:3, [1, 2]]print df.ix[1:3, ['total_bill', 'tip']]
3.313.31 tip total_bill1 1.66 10.342 3.50 23.683 3.31 23.68 total_bill tip1 10.34 1.662 23.68 3.503 23.68 3.31
print df.ix[[1, 2]]#行選擇
sex tip total_bill1 Male 1.66 10.342 Male 3.50 23.68
print df[1: 3]print df[['total_bill', 'tip']]# print df[1:2, ['total_bill', 'tip']] # TypeError: unhashable type
sex tip total_bill1 Male 1.66 10.342 Male 3.50 23.68 total_bill tip0 16.99 1.011 10.34 1.662 23.68 3.503 23.68 3.314 24.59 3.61
print df[1:3,1:2]
TypeError: unhashable type
相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!
推薦閱讀:
pandas中的Dataframe查詢有哪些方法
selenium+cookie跳過驗證碼登入實現步奏詳解