poj3436--ACM Computer Factory(最大流,拆點dinic)

來源:互聯網
上載者:User

標籤:des   style   io   ar   color   os   sp   for   strong   

ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5501   Accepted: 1887   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn‘t matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 13 415  0 0 0  0 1 010  0 0 0  0 1 130  0 1 2  1 1 13   0 2 1  1 1 1Sample input 23 55   0 0 0  0 1 0100 0 1 0  1 0 13   0 1 0  1 1 01   1 0 1  1 1 0300 1 1 2  1 1 1Sample input 32 2100  0 0  1 0200  0 1  1 1

Sample Output

Sample output 125 21 3 152 3 10Sample output 24 51 3 33 5 31 2 12 4 14 5 1Sample output 30 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.認真寫的第一個題,被__int64 坑了 。題目大意:組裝電腦,p個組件,n個機器。0代表沒有該組件,1代表一定有該組件,2代表可以有也可以沒有。要求找出從初始什麼組件都沒有的電腦,組裝成完整的電腦的最多的流水線。輸出組裝數,和機器串連方式。從全是0為源點,全是1為匯點,每台機器拆點,然後串連出圖來,再dinic。
#include <cstdio>#include <cstring>#include <algorithm>#include <queue>using namespace std;#define INF 0x3f3f3f3f#define LL __int64struct node{    int u , v , w ;    int next , k ;} p[1000000];struct node1{    int u , v , w ;} q[1000000] ;queue <int> que ;LL in[110] , out[110] , num[110] ;int head[110] , cnt ;int arr[110] , vis[110] ;void init(){    cnt = 0 ;    memset(in,0,sizeof(in)) ;    memset(out,0,sizeof(out)) ;    memset(head,-1,sizeof(head)) ;}void add(int u,int v,int w){    p[cnt].u = u ;    p[cnt].v = v ;    p[cnt].w = w ;    p[cnt].k = w ;    p[cnt].next = head[u] ;    head[u] = cnt++ ;    p[cnt].u = v ;    p[cnt].v = u ;    p[cnt].w = 0 ;    p[cnt].k = 0 ;    p[cnt].next = head[v] ;    head[v] = cnt++ ;}bool judge(LL x,LL y,int m){    int i , k1 , k2 ;    for(i = 1 ; i <= m ; i++)    {        k1 = x % 10 ;        k2 = y % 10 ;        x /= 10 ;        y /= 10 ;        if(k1 == 2 || k2 == 2)            continue ;        if( k1 != k2 )            return false ;    }    return true ;}bool bfs(int s,int e){    int i , u , v ;    while( !que.empty() )        que.pop();    memset(arr,-1,sizeof(arr)) ;    vis[s] = 1 ;    arr[s] = 0 ;    que.push(s) ;    while( !que.empty() )    {        u = que.front() ;        que.pop() ;        for(i = head[u] ; i != -1 ; i = p[i].next )        {            v = p[i].v ;            if( arr[v] == -1 && p[i].w )            {                arr[v] = arr[u] + 1 ;                que.push(v) ;            }        }    }    if( arr[e] > 0 )        return true ;    return false ;}int dfs(int u,int t,int min1){    if( u == t )        return min1 ;    int i , v , a , ans = 0 ;    for(i = head[u] ; i != -1 ; i = p[i].next)    {        v = p[i].v ;        if( arr[v] == arr[u] + 1  && p[i].w && ( a = dfs(v,t,min(min1,p[i].w) ) ) )        {            p[i].w -= a ;            p[i^1].w += a ;            ans += a ;            min1 -= a ;            if( !min1 ) break ;        }    }    if( ans )        return ans ;    arr[u] = -1 ;    return 0 ;}int main(){    int n , m , i , j , u , v , w , k , max_flow , sum ;    while( scanf("%d %d", &m, &n) != EOF )    {        init() ;        max_flow = sum = 0 ;        for(i = 1 ; i <= n ; i++)        {            k = 0 ;            scanf("%I64d", &num[i]) ;            for(j = 0 ; j < m ; j++)            {                scanf("%d", &w) ;                in[i] = in[i]*10 + w ;                k = k*10 + 1 ;            }            for(j = 0 ; j < m ; j++)            {                scanf("%d", &w) ;                out[i] = out[i]*10 + w ;            }        }        for(i = 1 ; i <= n ; i++)        {            add(i,i+50,num[i]) ;            if( judge(0,in[i],m) )                add(0,i,INF) ;            if( judge(k,out[i],m) )                add(i+50,101,INF) ;            for(j = 1 ; j <= n ; j++)            {                if( i == j ) continue ;                if( judge(out[i],in[j],m) )                    add(i+50,j,INF) ;            }        }        while( bfs(0,101) )        {            while( k = dfs(0,101,INF) )                max_flow += k ;        }        for(i = 51 ; i <= n+50 ; i++)        {            for(j = head[i] ; j != -1 ; j = p[j].next)            {                if( p[j].k == INF && p[j].u != 0 && p[j].v != 101 && p[j].w < p[j].k )                {                    q[sum].u = i-50 ;                    q[sum].v = p[j].v ;                    q[sum].w = p[j].k - p[j].w ;                    sum++ ;                }            }        }        if( max_flow == 0 )            printf("0 0\n") ;        else        {            printf("%d %d\n", max_flow, sum) ;            for(i = 0 ; i < sum ; i++)                printf("%d %d %d\n", q[i].u, q[i].v, q[i].w) ;        }    }    return 0;}

poj3436--ACM Computer Factory(最大流,拆點dinic)

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.