Python+matplotlib繪製不同大小和顏色散佈圖執行個體,pythonmatplotlib

來源:互聯網
上載者:User

Python+matplotlib繪製不同大小和顏色散佈圖執行個體,pythonmatplotlib

 具有不同標記顏色和大小的散佈圖示範。

示範結果:

實現代碼:

import numpy as npimport matplotlib.pyplot as pltimport matplotlib.cbook as cbook# Load a numpy record array from yahoo csv data with fields date, open, close,# volume, adj_close from the mpl-data/example directory. The record array# stores the date as an np.datetime64 with a day unit ('D') in the date column.with cbook.get_sample_data('goog.npz') as datafile:  price_data = np.load(datafile)['price_data'].view(np.recarray)price_data = price_data[-250:] # get the most recent 250 trading daysdelta1 = np.diff(price_data.adj_close) / price_data.adj_close[:-1]# Marker size in units of points^2volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2]fig, ax = plt.subplots()ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)ax.set_xlabel(r'$\Delta_i$', fontsize=15)ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=15)ax.set_title('Volume and percent change')ax.grid(True)fig.tight_layout()plt.show()

總結

以上就是本文關於Python+matplotlib繪製不同大小和顏色散佈圖執行個體的全部內容,希望對大家有所協助。感興趣的朋友可以繼續參閱本站其他相關專題,如有不足之處,歡迎留言指出。感謝朋友們對本站的支援!

相關文章

聯繫我們

該頁面正文內容均來源於網絡整理,並不代表阿里雲官方的觀點,該頁面所提到的產品和服務也與阿里云無關,如果該頁面內容對您造成了困擾,歡迎寫郵件給我們,收到郵件我們將在5個工作日內處理。

如果您發現本社區中有涉嫌抄襲的內容,歡迎發送郵件至: info-contact@alibabacloud.com 進行舉報並提供相關證據,工作人員會在 5 個工作天內聯絡您,一經查實,本站將立刻刪除涉嫌侵權內容。

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.