【翻譯自mos文章】解釋長條圖資訊,mos文章長條圖資訊
解釋長條圖資訊
來源於:
Interpreting Histogram Information (Doc ID 72539.1)
適用於:
Oracle Database - Enterprise Edition - Version 7.3.0.0 and later
Oracle Database - Standard Edition - Version 7.3.0.0 and later
Oracle Database - Personal Edition - Version 7.3.0.0 and later
Information in this document applies to any platform.
目的:
長條圖資訊是怎麼被儲存的,是怎麼被解釋的。
範圍:
其他有用的長條圖參考:
Document 1445372.1 Histograms: An Overview (10g and Above)
細節:
長條圖是一種機制,該機制用來儲存 列資料(column data)的詳細資料。該資料被CBO使用,用來決定一個查詢語句最佳化的訪問路徑(access path).
沒有長條圖時,最佳化器依靠的所有資訊是:一個列的高值和低值,該列的不同值個數,該列的空值個數,該table的記錄總數。
(實際上列的高值和低值是以raw 格式儲存的,因此不是特別有用),其他的資訊可以從dictionary views中查詢到。
沒有列的統計資訊時,最佳化器假設資料是均衡分布的,對於等值謂詞,產生以一個選擇率(column selectivity),該選擇率是如下計算的:1/NVD(Number of Distinct Values)
有長條圖時,你可以訪問行資料的更多分布資訊。
當一個列的資料分布不均衡時(即:列的資料分布 高度傾斜--資料分布傾斜的很厲害),Oracle 可以儲存列的長條圖以給出更好的選擇率.這會產生比使用標準的統計資訊(high and low values plus Number of Distinct Values)更好的執行計畫
就具體實現而言(In terms of implementation),我們可以選擇 將 每個不同值和該值的記錄數存放在一起,對於值很少的記錄數是有效,此時,'width balanced' histograms 被使用。
隨著不同值數量的增長,儲存資料的數量變得過高,我們需要使用一個不同的方法來儲存長條圖資料。此時,我們可以選擇 height balanced histograms.
使用如上兩種方法,列長條圖提供了一個有效和集中的方法來展現資料分布。當建立長條圖時,儲存的資訊依靠“不同值的數量是否小於等於bucket(預設75個,最大254個)的數量”進行不同的解釋。
如果不同值的數量小於等於長條圖bucket的數量(bucket最多254個),那麼 Frequency Histogram 被建立
如果不同值的數量大於長條圖bucket的數量, Height Balanced Histogram 被建立。
Frequency Histogram
Frequency Histogram 使用bucket來記錄每一個不同值的記錄個數
Height Balanced Histogram
Height Balanced Histogram 通過把資料分割到不同bucket中來實現。每個bucket 包括相同數量的列值。每個bucket中的最高值(or END_POINT)和最低值被記錄在零號bucket中。
一旦資料被儲存於bucket中,我們可以識別兩個類型的data value--- Non-popular values and popular values
Non-popular values--are those that do not occur multiple times as end points.不會出現多次
Popular values--occur multiple times as end points.會出現多次。
We can use Popular and Non-Popular Values to provide use with various statistics.Since we know how many values there are in a bucket we can use this information to estimate the number of rows in total that are covered by Popular and Non-Popular values.
•The selectivity for popular values can be obtained by calculation the proportion of bucket endpoints filled by that popular value.
•The selectivity for non popular values can now be calculated as 1/number non-popular bucket endpoints, so we can now be more accurate about selectivities than the original 1/NDV, because we have removed the popular values from the equation.
How histograms are used
長條圖被用來得到column predicate 更好的selectivity 估算
Where there are fewer distinct values than buckets, the selectivity is simply calculated as we have accurate row information for each value. For the case where we have more distinct values than buckets, the following outlines how these selectivities are obtained.
Equality Predicate Selectivity calculated from:
•Popular Value:
Number of buckets for value / Total Number of buckets
•Non-Popular Value:
Density see:
Document 43041.1 Query Optimizer: What is Density?
Less than < (Same principle applies for > & >= )
•All Values:
Buckets with endpoints < value / Total No. of buckets
Histogram Examples
Table TAB1SQL> desc tab1 Name Null? Type ------------------------------- -------- ---- A NUMBER(6) B NUMBER(6)
Column A contains unique values from 1 to 10000.
Column B contains 10 distinct values.
The value '5' occurs 9991 times.
Values '1, 2, 3, 4, 9996, 9997, 9998, 9999, 10000' occur only once.
i.e.
select distinct B , count(*)from HTAB1group by Border by B; B COUNT(*)---------- ---------- 1 1 2 1 3 1 4 1 5 9991 9996 1 9997 1 9998 1 9999 1 10000 110 rows selected.
There is an index on Column B.
Statistics are gathered without Histograms using:
exec DBMS_STATS.GATHER_TABLE_STATS (NULL,'HTAB1', method_opt => 'FOR ALL COLUMNS SIZE 1');
Setup:
drop table HTAB1;create table HTAB1 (a number, b number); Insert into HTAB1 ( A,B) values ( 1,1); Insert into HTAB1 ( A,B) values ( 2,2); Insert into HTAB1 ( A,B) values ( 3,3); Insert into HTAB1 ( A,B) values ( 4,4); Insert into HTAB1 ( A,B) values ( 9996,9996); Insert into HTAB1 ( A,B) values ( 9997,9997); Insert into HTAB1 ( A,B) values ( 9998,9998); Insert into HTAB1 ( A,B) values ( 9999,9999); Insert into HTAB1 ( A,B) values ( 10000,10000);commit;begin for i in 5 .. 9995 loop Insert into HTAB1 ( A,B)values ( i,5); if (mod(i,100) = 0) then commit; end if; end loop; commit;end;/commit;create index HTAB1_B on HTAB1(b);exec DBMS_STATS.GATHER_TABLE_STATS (NULL,'HTAB1', method_opt => 'FOR ALL COLUMNS SIZE 1');alter session set OPTIMIZER_DYNAMIC_SAMPLING = 0;
Function to convert raw data in to numeric data:
create or replace function raw_to_number(my_input raw)return numberas my_output number;begin dbms_stats.convert_raw_value(my_input,my_output); return my_output;end;/
This results in statistics as follows:
column COLUMN_NAME format a5 heading COLcolumn NUM_DISTINCT format 99990column LOW_VALUE format 99990column HIGH_VALUE format 99990column DENSITY format 99990column NUM_NULLS format 99990column NUM_BUCKETS format 99990column SAMPLE_SIZE format 99990select COLUMN_NAME,NUM_DISTINCT,raw_to_number(LOW_VALUE) Low,raw_to_number(HIGH_VALUE) High,DENSITY,NUM_NULLS, NUM_BUCKETS,LAST_ANALYZED,SAMPLE_SIZE,HISTOGRAMfrom user_tab_columnswhere table_name = 'HTAB1';COL NUM_DISTINCT LOW HIGH DENSITY NUM_NULLS NUM_BUCKETS LAST_ANALYZED SAMPLE_SIZE HISTOGRAM----- ------------ ---------- ---------- ------- --------- ----------- -------------------- ----------- ---------------A 10000 1 10000 0 0 1 31-jan-2013 09:32:08 10000 NONEB 10 1 10000 0 0 1 31-jan-2013 09:32:08 10000 NONEselect lpad(TABLE_NAME,10) TAB, lpad(COLUMN_NAME, 10) COL, ENDPOINT_NUMBER, ENDPOINT_VALUEfrom user_histogramswhere table_name='HTAB1'order by COL, ENDPOINT_NUMBER;TAB COL ENDPOINT_NUMBER ENDPOINT_VALUE---------- ---------- --------------- -------------- HTAB1 A 0 1 HTAB1 A 1 10000 HTAB1 B 0 1 HTAB1 B 1 10000
In the above you can see that the statistics gathering has not created a histogram. There is a single bucket and high and a low ENDPOINT_NUMBER for each column value ( you will always get 2 entries in USER_HISTOGRAMS for each column, for the high and low values respectively).
Test queries:
To replicate the tests you will need to disable OPTIMIZER_DYNAMIC_SAMPLING
alter session set OPTIMIZER_DYNAMIC_SAMPLING = 0;
See:
Document 336267.1 Optimizer Dynamic Sampling (OPTIMIZER_DYNAMIC_SAMPLING)
Without Histograms, both queries do an INDEX RANGE SCAN because the optimizer believes that the data is uniformly distributed in column B and that each predicate with return 1/10th of the values because there are 10 distinct values:
---------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |---------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1111 | 6666 | 5 (0)| 00:00:01 || 1 | TABLE ACCESS BY INDEX ROWID| HTAB1 | 1111 | 6666 | 5 (0)| 00:00:01 ||* 2 | INDEX RANGE SCAN | HTAB1_B | 1111 | | 3 (0)| 00:00:01 |---------------------------------------------------------------------------------------
In fact it may be preferable to use a Full Table Scan for the select where b=5 and index lookups for the others.
Gathering Histogram Statistics
If we collect histogram statistics with the recommended settings:
exec DBMS_STATS.GATHER_TABLE_STATS (NULL,'HTAB1', method_opt => 'FOR ALL COLUMNS SIZE AUTO');
The b=5 query now does a Full Table Scan
select * from htab1 where b=5;---------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |---------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 9991 | 69937 | 7 (0)| 00:00:01 ||* 1 | TABLE ACCESS FULL| HTAB1 | 9991 | 69937 | 7 (0)| 00:00:01 |---------------------------------------------------------------------------
The query where B is 3 still uses an index:
select * from htab1 where b=3;---------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |---------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 7 | 2 (0)| 00:00:01 || 1 | TABLE ACCESS BY INDEX ROWID| HTAB1 | 1 | 7 | 2 (0)| 00:00:01 ||* 2 | INDEX RANGE SCAN | HTAB1_B | 1 | | 1 (0)| 00:00:01 |---------------------------------------------------------------------------------------
This is because a FREQUENCY Histogram has been created:
COL NUM_DISTINCT LOW HIGH DENSITY NUM_NULLS NUM_BUCKETS LAST_ANALYZED SAMPLE_SIZE HISTOGRAM----- ------------ ---------- ---------- ------- --------- ----------- -------------------- ----------- ---------------A 10000 1 10000 0 0 1 31-jan-2013 09:58:01 10000 NONEB 10 1 10000 0 0 10 31-jan-2013 09:58:01 10000 FREQUENCYTAB COL ENDPOINT_NUMBER ENDPOINT_VALUE---------- ---------- --------------- -------------- HTAB1 A 0 1 HTAB1 A 1 10000 HTAB1 B 1 1 HTAB1 B 2 2 HTAB1 B 3 3 HTAB1 B 4 4 HTAB1 B 9995 5 HTAB1 B 9996 9996 HTAB1 B 9997 9997 HTAB1 B 9998 9998 HTAB1 B 9999 9999 HTAB1 B 10000 1000012 rows selected.
On Column B there are 10 buckets matching up with the 10 distinct values.
The ENDPOINT_VALUE shows the column value and the ENDPOINT_NUMBER shows the cumulative number of rows. So the number of rows for ENDPOINT_VALUE 2, it has an ENDPOINT_NUMBER 2, the previous ENDPOINT_NUMBER is 1, hence the number of rows with value 2 is 1. Another example is ENDPOINT_VALUE 5. Its ENDPOINT_NUMBER is 9995. The previous bucket ENDPOINT_NUMBER is 4, so 9995 - 4 = 9991 rows containing the value 5.
Frequency histograms work fine with a low number of distinct values, but when the number exceeds the maximum number of buckets, you cannot create a bucket for each value. In this case the Optimizer creates Height balanced histograms.
Height Balanced Histograms
You can demonstrate this situation by forcing the optimizer to create fewer buckets than the Number of Distinct Values. i.e. using 8 buckets for 10 Distinct Values:
exec DBMS_STATS.GATHER_TABLE_STATS (NULL,'HTAB1', method_opt => 'FOR COLUMNS B SIZE 8');
So now we have gathered a HEIGHT BALANCED HISTOGRAM for Column B:
COL NUM_DISTINCT LOW HIGH DENSITY NUM_NULLS NUM_BUCKETS LAST_ANALYZED SAMPLE_SIZE HISTOGRAM----- ------------ ---------- ---------- ------- --------- ----------- -------------------- ----------- ---------------A 10000 1 10000 0 0 1 31-jan-2013 09:58:01 10000 NONEB 10 1 10000 0 0 8 31-jan-2013 09:59:09 10000 HEIGHT BALANCEDTAB COL ENDPOINT_NUMBER ENDPOINT_VALUE---------- ---------- --------------- -------------- HTAB1 A 0 1 HTAB1 A 1 10000 HTAB1 B 0 1 HTAB1 B 7 5 HTAB1 B 8 10000
Notice that there are 8 Buckets against B now.
Oracle puts the same number of values in each bucket and records the endpoint of each bucket.
With HEIGHT BALANCED Histograms, the ENDPOINT_NUMBER is the actual bucket number and ENDPOINT_VALUE is the endpoint value of the bucket determined by the column value.
From the above, bucket 0 holds the low value for the column.
Because buckets 1-7 have the same endpoint, Oracle does not store all these rows to save space. But we have: bucket 1 with an endpoint of 5, bucket 2 with an endpoint of 5, bucket 3 with an endpoint of 5, bucket 4 with an endpoint of 5, bucket 5 with an endpoint of 5, bucket 6 with an endpoint of 5, bucket 7 with an endpoint of 5 AND bucket 8 with an endpoint of 10000 So bucket 1 contains values between 1 and 5, bucket 8 contains values between 5 and 10000.
All buckets contain the same number of values (which is why they are called height-balanced histograms), except the last bucket may have fewer values then the other buckets.
Storing Character Values in Histograms
For character columns, Oracle only stores the first 32 bytes of any string (there are also limits on numeric columns, but these are less frequently an issue since the majority of numbers are insufficiently large to encounter any problems). See:
Document 212809.1 Limitations of the Oracle Cost Based Optimizer
Any predicates that contain strings greater than 32 characters will not use histogram information and the selectivity will be 1 / Number of DISTINCT Values. Data in histogram endpoints is normalized to double precision floating point arithmetic.
For Example
SQL> select * from example;A----------abcdeeee
The table contains 5 distinct values. There is one occurence of 'a', 'b', 'c' and 'd' There are 4 occurrences of 'e'. If we create a histogram: Looking in user_histograms:
TABLE COL ENDPOINT_NUMBER ENDPOINT_VALUE---------- ----- --------------- -------------- EXAMPLE A 1 5.0365E+35 EXAMPLE A 2 5.0885E+35 EXAMPLE A 3 5.1404E+35 EXAMPLE A 4 5.1923E+35 EXAMPLE A 8 5.2442E+35
So:
ENDPOINT_VALUE 5.0365E+35 represents a5.0885E+35 represents b5.1404E+35 represents c5.1923E+35 represents d5.2442E+35 represents e
Then, if you look at the cumulative values for ENDPOINT_NUMBER, the corresponding ENDPOINT_VALUE's are correct.