小米5s跳一跳小程式python源碼,5spython
本文執行個體為大家分享了跳一跳小程式python源碼,供大家參考,具體內容如下
跳一跳小程式小米5s源碼python,搭建環境後親測可用。
# coding: utf-8import osimport sysimport subprocessimport shutilimport timeimport mathfrom PIL import Image, ImageDrawimport randomimport jsonimport re# === 思路 ===# 核心:每次落穩之後,根據算出棋子的座標和下一個塊頂面的中點座標,# 根據兩個點的距離乘以一個時間係數獲得長按的時間# 識別棋子:靠棋子的顏色來識別位置,通過發現最下面一行大概是一條直線,就從上往下一行一行遍曆,# 比較顏色(顏色用了一個區間來比較)找到最下面的那一行的所有點,然後求個中點,# 求好之後再讓 Y 軸座標減小棋子底盤的一半高度從而得到中心點的座標# 識別棋盤:靠底色和方塊的色差來做,從分數之下的位置開始,一行一行掃描,由於圓形的塊最頂上是一條線,# 方形的上面大概是一個點,所以就用類似識別棋子的做法多識別了幾個點求中點,# 這時候得到了塊中點的 X 軸座標,這時候假設現在棋子在當前塊的中心,# 根據一個通過擷取的固定的角度來推出中點的 Y 座標# 最後:根據兩點的座標算距離乘以係數來擷取長按時間(似乎可以直接用 X 軸距離)# TODO: 解決定位位移的問題# TODO: 看看兩個塊中心到中軸距離是否相同,如果是的話靠這個來判斷一下當前超前還是落後,便於矯正# TODO: 一些固定值根據的具體大小計算# TODO: 直接用 X 軸距離簡化邏輯def open_accordant_config(): screen_size = _get_screen_size() config_file = "{path}/config/{screen_size}/config.json".format( path=sys.path[0], screen_size=screen_size ) if os.path.exists(config_file): with open(config_file, 'r') as f: print("Load config file from {}".format(config_file)) return json.load(f) else: with open('{}/config/default.json'.format(sys.path[0]), 'r') as f: print("Load default config") return json.load(f)def _get_screen_size(): size_str = os.popen('adb shell wm size').read() m = re.search('(\d+)x(\d+)', size_str) if m: width = m.group(1) height = m.group(2) return "{height}x{width}".format(height=height, width=width)config = open_accordant_config()# Magic Number,不設定可能無法正常執行,請根據具體從上到下按需設定under_game_score_y = 300press_coefficient = 1.47 # 長按的時間係數,請自己根據實際情況調節piece_base_height_1_2 = 25 # 二分之一的棋子底座高度,可能要調節piece_body_width = 80 # 棋子的寬度,比中量到的稍微大一點比較安全,可能要調節# 類比按壓的起始點座標,需要自動重複遊戲請設定成“再來一局”的座標if config.get('swipe'): swipe = config['swipe']else: swipe = {} swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410screenshot_backup_dir = 'screenshot_backups/'if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir)def pull_screenshot(): process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE) screenshot = process.stdout.read() if sys.platform == 'win32': screenshot = screenshot.replace(b'\r\n', b'\n') f = open('autojump.png', 'wb') f.write(screenshot) f.close()def backup_screenshot(ts): # 為了方便失敗的時候 debug if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y): draw = ImageDraw.Draw(im) # 對debug圖片加上詳細的注釋 draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3) draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0)) draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0)) draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255)) draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255)) draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0)) draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255)) del draw im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))def set_button_position(im): # 將swipe設定為 `再來一局` 按鈕的位置 global swipe_x1, swipe_y1, swipe_x2, swipe_y2 w, h = im.size left = w / 2 top = 1003 * (h / 1280.0) + 10 swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, topdef jump(distance): if distance < 400: distance = 0.9 * distance + 50 else: distance = 0.85 * distance + 80 press_time = distance * press_coefficient press_time = max(press_time, 200) # 設定 200 ms 是最小的按壓時間 press_time = int(press_time) cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format( x1=swipe['x1'], y1=swipe['y1'], x2=swipe['x2'], y2=swipe['y2'], duration=press_time ) print(cmd) os.system(cmd)# 轉換色彩模式hsv2rgbdef hsv2rgb(h, s, v): h = float(h) s = float(s) v = float(v) h60 = h / 60.0 h60f = math.floor(h60) hi = int(h60f) % 6 f = h60 - h60f p = v * (1 - s) q = v * (1 - f * s) t = v * (1 - (1 - f) * s) r, g, b = 0, 0, 0 if hi == 0: r, g, b = v, t, p elif hi == 1: r, g, b = q, v, p elif hi == 2: r, g, b = p, v, t elif hi == 3: r, g, b = p, q, v elif hi == 4: r, g, b = t, p, v elif hi == 5: r, g, b = v, p, q r, g, b = int(r * 255), int(g * 255), int(b * 255) return r, g, b# 轉換色彩模式rgb2hsvdef rgb2hsv(r, g, b): r, g, b = r/255.0, g/255.0, b/255.0 mx = max(r, g, b) mn = min(r, g, b) df = mx-mn if mx == mn: h = 0 elif mx == r: h = (60 * ((g-b)/df) + 360) % 360 elif mx == g: h = (60 * ((b-r)/df) + 120) % 360 elif mx == b: h = (60 * ((r-g)/df) + 240) % 360 if mx == 0: s = 0 else: s = df/mx v = mx return h, s, vdef find_piece_and_board(im): w, h = im.size piece_x_sum = 0 piece_x_c = 0 piece_y_max = 0 board_x = 0 board_y = 0 left_value = 0 left_count = 0 right_value = 0 right_count = 0 from_left_find_board_y = 0 from_right_find_board_y = 0 scan_x_border = int(w / 8) # 掃描棋子時的左右邊界 scan_start_y = 0 # 掃描的起始y座標 im_pixel=im.load() # 以50px步長,嘗試探測scan_start_y for i in range(int(h / 3), int( h*2 /3 ), 50): last_pixel = im_pixel[0,i] for j in range(1, w): pixel=im_pixel[j,i] # 不是純色的線,則記錄scan_start_y的值,準備跳出迴圈 if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]: scan_start_y = i - 50 break if scan_start_y: break print('scan_start_y: ', scan_start_y) # 從scan_start_y開始往下掃描,棋子應位於螢幕上半部分,這裡暫訂不超過2/3 for i in range(scan_start_y, int(h * 2 / 3)): for j in range(scan_x_border, w - scan_x_border): # 橫座標方面也減少了一部分掃描開銷 pixel = im_pixel[j,i] # 根據棋子的最低行的顏色判斷,找最後一行那些點的平均值,這個顏色這樣應該 OK,暫時不提出來 if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110): piece_x_sum += j piece_x_c += 1 piece_y_max = max(i, piece_y_max) if not all((piece_x_sum, piece_x_c)): return 0, 0, 0, 0 piece_x = piece_x_sum / piece_x_c piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盤高度的一半 for i in range(int(h / 3), int(h * 2 / 3)): last_pixel = im_pixel[0, i] # 計算陰影的RGB值,通過photoshop觀察,陰影部分其實就是背景色的明度V 乘以0.7的樣子 h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2]) r, g, b = hsv2rgb(h, s, v * 0.7) if from_left_find_board_y and from_right_find_board_y: break if not board_x: board_x_sum = 0 board_x_c = 0 for j in range(w): pixel = im_pixel[j,i] # 修掉腦袋比下一個小格子還高的情況的 bug if abs(j - piece_x) < piece_body_width: continue # 修掉圓頂的時候一條線導致的小 bug,這個顏色判斷應該 OK,暫時不提出來 if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10: board_x_sum += j board_x_c += 1 if board_x_sum: board_x = board_x_sum / board_x_c else: # 繼續往下尋找,從左至右掃描,找到第一個與背景顏色不同的像素點,記錄位置 # 當有連續3個相同的記錄時,表示發現了一條直線 # 這條直線即為目標board的左邊緣 # 然後當前的 y 值減 3 獲得左邊緣的第一個像素 # 就是頂部的左邊頂點 for j in range(w): pixel = im_pixel[j, i] # 修掉腦袋比下一個小格子還高的情況的 bug if abs(j - piece_x) < piece_body_width: continue if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10): if left_value == j: left_count = left_count+1 else: left_value = j left_count = 1 if left_count > 3: from_left_find_board_y = i - 3 break # 邏輯跟上面類似,但是方向從右向左 # 當有遮擋時,只會有一邊有遮擋 # 算出來兩個必然有一個是對的 for j in range(w)[::-1]: pixel = im_pixel[j, i] # 修掉腦袋比下一個小格子還高的情況的 bug if abs(j - piece_x) < piece_body_width: continue if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10): if right_value == j: right_count = left_count + 1 else: right_value = j right_count = 1 if right_count > 3: from_right_find_board_y = i - 3 break # 如果頂部像素比較多,說明圖案近圓形,相應的求出來的值需要增大,這裡暫訂增大頂部寬的三分之一 if board_x_c > 5: from_left_find_board_y = from_left_find_board_y + board_x_c / 3 from_right_find_board_y = from_right_find_board_y + board_x_c / 3 # 按實際的角度來算,找到接近下一個 board 中心的座標 這裡的角度應該是30°,值應該是tan 30°,math.sqrt(3) / 3 board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3 # 從左從右取出兩個資料進行對比,選出來更接近原來老演算法的那個值 if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y): new_board_y = from_right_find_board_y else: new_board_y = from_left_find_board_y if not all((board_x, board_y)): return 0, 0, 0, 0 return piece_x, piece_y, board_x, new_board_ydef dump_device_info(): size_str = os.popen('adb shell wm size').read() device_str = os.popen('adb shell getprop ro.product.model').read() density_str = os.popen('adb shell wm density').read() print("如果你的指令碼無法工作,上報issue時請copy如下資訊:\n**********\ \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format( size=size_str.strip(), type=device_str.strip(), dpi=density_str.strip(), os=sys.platform, python=sys.version ))def check_adb(): flag = os.system('adb devices') if flag == 1: print('請安裝ADB並配置環境變數') sys.exit()def main(): h, s, v = rgb2hsv(201, 204, 214) print(h, s, v) r, g, b = hsv2rgb(h, s, v*0.7) print(r, g, b) dump_device_info() check_adb() while True: pull_screenshot() im = Image.open('./autojump.png') # 擷取棋子和 board 的位置 piece_x, piece_y, board_x, board_y = find_piece_and_board(im) ts = int(time.time()) print(ts, piece_x, piece_y, board_x, board_y) set_button_position(im) jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2)) save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y) backup_screenshot(ts) time.sleep(3) # 為了保證的時候應落穩了,多延遲一會兒if __name__ == '__main__': main()
源碼下載:跳一跳小程式python源碼
更多內容大家可以參考專題《跳一跳》進行學習。
以上就是本文的全部內容,希望對大家的學習有所協助,也希望大家多多支援幫客之家。