譯者:AlfredCheung
在搭建高輸送量web應用這個議題上,NginX和Node.js可謂是天生一對。 他們都是基於事件驅動模型而設計,可以輕易突破Apache等傳統web伺服器的C10K瓶頸。 預設的配置已經可以獲得很高的併發,不過,要是大家想在廉價硬體上做到每秒數千以上的請求,還是有一些工作要做的。
這篇文章假定讀者們使用NginX的HttpProxyModule來為上游的node.js伺服器充當反向代理。 我們將介紹Ubuntu 10.04以上系統sysctl的調優,以及node.js應用與NginX的調優。 當然,如果大家用的是Debian系統,也能達到同樣的目標,只不過調優的方法有所不同而已。
網路調優
如果不先對Nginx和Node.js的底層傳輸機制有所瞭解,並進行針對性優化,可能對兩者再細緻的調優也會徒勞無功。 一般情況下,Nginx通過TCP socket來連接用戶端與上游應用。
我們的系統對TCP有許多門限值與限制,通過內核參數來設定。 這些參數的預設值往往是為一般的用途而定的,並不能滿足web伺服器所需的高流量、短生命的要求。
這裡列出了調優TCP可供候選的一些參數。 為使它們生效,可以將它們放在/etc/sysctl.conf檔裡,或者放入一個新設定檔,比如/etc/sysctl.d/99-tuning.conf,然後運行sysctl -p,讓內核裝載它們。 我們是用sysctl-cookbook來幹這個體力活。
需要注意的是,這裡列出來的值是可以安全使用的,但還是建議大家研究一下每個參數的含義,以便根據自己的負荷、硬體和使用方式選擇一個更加合適的值。
net.ipv4.ip_local_port_range='1024 65000'
net.ipv4.tcp_tw_reuse='1'
net.ipv4.tcp_fin_timeout='15'
net.core.netdev_max_backlog='4096'
net.core.rmem_max='16777216'
net.core.somaxconn='4096'
net.core.wmem_max='16777216'
net.ipv4.tcp_max_syn_backlog='20480'
net.ipv4.tcp_max_tw_buckets='400000'
net.ipv4.tcp_no_metrics_save='1'
net.ipv4.tcp_rmem='4096 87380 16777216'
net.ipv4.tcp_syn_retries='2'
net.ipv4.tcp_synack_retries='2'
net.ipv4.tcp_wmem='4096 65536 16777216'
vm.min_free_kbytes='65536'
重點說明其中幾個重要的。
net.ipv4.ip_local_port_range
為了替上游的應用服務下游的用戶端,NginX必須打開兩條TCP連接,一條連接用戶端,一條連接應用。 在伺服器收到很多連接時,系統的可用埠將很快被耗盡。 通過修改net.ipv4.ip_local_port_range參數,可以將可用埠的範圍改大。 如果在/var/log/syslog中發現有這樣的錯誤: 「possible SYN flooding on port 80. Sending cookies」,即表明系統找不到可用埠。 增大net.ipv4.ip_local_port_range參數可以減少這個錯誤。
net.ipv4.tcp_tw_reuse
當伺服器需要在大量TCP連接之間切換時,會產生大量處於TIME_WAIT狀態的連接。 TIME_WAIT意味著連接本身是關閉的,但資源還沒有釋放。 將net_ipv4_tcp_tw_reuse設置為1是讓內核在安全時儘量回收連接,這比重新建立新連接要便宜得多。
net.ipv4.tcp_fin_timeout
這是處於TIME_WAIT狀態的連接在回收前必須等待的最小時間。 改小它可以加快回收。
如何檢查連接狀態
使用netstat:
netstat -tan | awk '{print $6}' | sort | uniq -c
或使用ss:
ss -s
NginX
隨著web伺服器的負載逐漸升高,我們就會開始遭遇NginX的某些奇怪限制。 連接被丟棄,內核不停報SYN flood。 而這時,平均負荷和CPU使用率都很小,伺服器明明是可以處理更多連接的狀態,真令人沮喪。
經過調查,發現有非常多處於TIME_WAIT狀態的連接。 這是其中一個伺服器的輸出:
ss -s
Total: 388 (kernel 541)
TCP: 47461 (estab 311, closed 47135, orphaned 4, synrecv 0, timewait 47135 /0), ports 33938
Transport Total IP IPv6
* &n bsp;541 - -
RAW &nbs p;0 0 0
UDP & nbsp;13 10 3
TCP ; 326 325 1
INET 339 &n bsp; 335 4
FRAG 0 0 0
有47135個TIME_WAIT連接! 而且,從ss可以看出,它們都是已經關閉的連接。 這說明,伺服器已經消耗了絕大部分可用埠,同時也暗示我們,伺服器是為每個連接都分配了新埠。 調優網路對這個問題有一點説明,但是埠仍然不夠用。
經過繼續研究,我找到了一個關於上行連接keepalive指令的文檔,它寫道:
設置通往上游伺服器的最大空閒保活連接數,這些連接會被保留在工作進程的緩存中。
有趣。 理論上,這個設置是通過在緩存的連接上傳遞請求來盡可能減少連接的浪費。 文檔中還提到,我們應該把proxy_HTTP_version設為"1.1",並清除"Connection"頭部。 經過進一步的研究,我發現這是一種很好的想法,因為HTTP/1.1相比HTTP1.0,大大優化了TCP連接的使用率,而Nginx預設用的是HTTP/1.0。
按文檔的建議修改後,我們的上行設定檔變成這樣:
upstream backend_nodejs {
server nodejs-3:5016 max_fails=0 fail_timeout=10s;
server nodejs-4:5016 max_fails=0 fail_timeout=10s;
server nodejs-5:5016 max_fails=0 fail_timeout=10s;
server nodejs-6:5016 max_fails=0 fail_timeout=10s;
keepalive 512;
}
我還按它的建議修改了server一節的proxy設置。 同時,加了一個 p roxy_next_upstream來跳過故障的伺服器,調整了用戶端的 keepalive_timeout,並關閉訪問日誌。 配置變成這樣:
server {
listen 80;
server_name fast.gosquared.com;
client_max_body_size 16M;
keepalive_timeout 10;< br> location / {
proxy_next_upstream error timeout HTTP_500 HTTP_502 HTTP_503 HTTP_504;
proxy_set_header Co nnection "";
proxy_HTTP_version 1.1;
proxy_pass HTTP://backend_nodejs;
}
access_log off;
error_log /dev/null crit;
}
採用新的配置後,我發現伺服器們佔用的socket 降低了90%。 現在可以用少得多的連接來傳輸請求了。 新的輸出如下:
ss -s
Total: 558 (kernel 604)
TCP: 4675 (estab 485, closed 4183, orphaned 0, synrecv 0, timewait 4183/0), ports 2768
Transport Total IP IPv6
* 604 - -
RAW 0 0 0
UDP 13 10 3
TCP 492 491 1
INET 505 501 4
得益于事件驅動式設計可以非同步處理I/O,Node.js開箱即可處理大量的連接和請求。 雖然有其它一些調優手段,但這篇文章將主要關注node.js的進程方面。
Node是單線程的,不會自動使用多核。 也就是說,應用不能自動獲得伺服器的全部能力。
實現Node進程的集群化
我們可以修改應用,讓它fork多個執行緒,在同一個埠上接收資料,從而實現負載的跨越多核。 Node有一個cluster模組,提供了實現這個目標所必需的所有工具,但要將它們加入應用中還需要很多體力活。 如果你用的是express,eBay有一個叫cluster2的模組可以用。
防止上下文切換
當運行多個進程時,應該確保每個CPU核同一時間只忙於一個進程。 一般來說,如果CPU有N個核,我們應該生成N-1個應用進程。 這樣可以確保每個進程都能得到合理的時間片,而剩下的一個核留給內核調度程式運行其它任務。 我們還要確保伺服器上基本不執行除Node.js外的其它任務,防止出現CPU的爭用。
我們曾經犯過一個錯誤,在伺服器上部署了兩個node.js應用,然後每個應用都開了N-1個進程。 結果,它們互相之間搶奪CPU,導致系統的負荷急升。 雖然我們的伺服器都是8核的機器,但仍然可以明顯地感覺到由上下文切換引起的性能開銷。 上下文切換是指CPU為了執行其它任務而掛起當前任務的現象。 在切換時,內核必須掛起當前進程的所有狀態,然後裝載和執行另一個進程。 為了解決這個問題,我們減少了每個應用開啟的進程數,讓它們公平地分享CPU,結果系統負荷就降了下來:
load-reduction
請注意上圖,看系統負荷(藍線)是如何降到CPU核數(紅線)以下的。 在其它伺服器上,我們也看到了同樣的情況。 既然總的工作量保持不變,那麼上圖中的性能改善只能歸功於上下文切換的減少。