C # Use NPOI to generate an Excel file with a wide row of precise columns,

Source: Internet
Author: User

C # Use NPOI to generate an Excel file with a wide row of precise columns,

Preface

NPOI is an Excel operating tool. exporting and importing data is as fast as lightning,

However, the SetColumnWidth function is not applicable to anyone. It cannot be controlled because it is used to set the width based on the number of characters. In fact, there is still a pixel concept in the Excel column width, so I cannot understand it.

// Use and comment with SetColumnWidth

[Csharp]View plaincopy
  1. IWorkbook hssfworkbook = new HSSFWorkbook ();
  2. ISheet sheet1 = hssfworkbook. CreateSheet ("Sheet1 ");
  3. Sheet1.SetColumnWidth (1,100*256 );
  4. // Summary:
  5. // Set the width (in units of 1/256th of a character width) The maximum column
  6. // Width for an individual cell is 255 characters. This value represents
  7. // Number of characters that can be displayed in a cell that is formatted
  8. // The standard font.
  9. //
  10. // Parameters:
  11. // ColumnIndex:
  12. // The column to set (0-based)
  13. //
  14. // Width:
  15. // The width in units of 1/256th of a character width


Looking at this comment, I think it hurts.

Problems encountered

If you want to generate an Excel file in a fixed format, you must have the exact column width and row height, and use it for printing and other special requirements. How can this problem be solved?

 

Solution

Haha, opportunistic approach,

Create an xls template that has configured the Row Height and column width as the template. Fill in a few characters wherever you want to fill the characters (to avoid the NPOI task, the cell is NULL) and set the font and other content,

Sheet to Operate Excel, so the efficiency of file generation is extremely high,

In less than two seconds, you can generate one hundred Excel files with different cell styles. NPOI is worthy of being an xls operating tool,

This saves a lot of effort. Even if the font size is centered or right aligned, the color can be set in the template without the need to use NPOI settings, after all, it is quite troublesome to write code to set cell styles.

 

Conclusion

This solution is only suitable for the case where a small number of characters need to be output, and the number of output characters is uncertain, because the column width or Row Height may change due to the filling of cells,

This affects print preview and so on. In this case, we will not describe it because it is not tested.


In C language-> what?

-> Is a whole. It is used to point to a struct, class in C ++, and other pointers containing sub-data to obtain sub-data. In other words, if we define a struct in C and declare a pointer pointing to this struct, we need to use "->" to retrieve the data in the struct using the pointer ".
For example:
Struct Data
{
Int a, B, c;
};/* Define struct */
Struct Data * p;/* define struct pointer */
Struct Data A = {1, 2, 3};/* declare variable */
Int x;/* declare a variable x */
P = & A;/* point p to */
X = p-> a;/* indicates that the data item a in the struct pointed to by p is assigned to x */
/* Because p points to A, p-> a = A. a, that is, 1 */

For the first problem, p = p-> next; this should appear in the linked list of C language. next here should be a struct pointer of the same type as p, and its definition format should be:
Struct Data
{
Int;
Struct Data * next;
};/* Define struct */
............
Main ()
{
Struct Data * p;/* declare the pointer Variable p */
......
P = p-> next;/* assign the value in next to p */
}
The linked list pointer is a difficulty in C language, but it is also the key. It is very useful to learn it. To be careful, you must first talk about variables and pointers.
What is a variable? The so-called variables should not be simply thought that the amount will become a variable. Let's use the question of our Dean: "Is the classroom changing ?" Change, because there are different people in the classroom every day, but they do not change, because the classroom is always there, and it does not become larger or smaller. This is the variable: There is a constant address and a variable storage space. Under normal circumstances, we only see the variable in the room, that is, its content, but do not pay attention to the variable address, but the C language pointer is the address of the room. We declare that variables are equivalent to building a house to store things. We can directly watch things in the house, while declaring pointers is equivalent to getting a positioner. When a pointer points to a variable, it is to use the pointer to locate the variable. Then we can use the pointer to find the variable "tracked" and get the content in it.
What about struct? The structure is equivalent to a villa composed of several houses, and several houses are bound for use together. Suppose there are many such villas distributed in a big maze, and each villa has a house. The location information of another villa is put in it. Now you have found the first villa with the positioner and obtained what you want from it (the data part of the linked list ), then, calculate the location of the next villa into your positioner (p = p-> next), and go down to the next villa ...... If you go on like this, you will know that the information of a villa on the ground is gone (p-> next = NULL), and your trip is over. This is the process of traversing a linked list. Now you can understand the meaning of p = p-> next!
Write so much. I hope you can understand.
If you want to learn c and C ++ well, you must be familiar with linked lists and pointers!

In C language-> what?

-> Is a whole. It is used to point to a struct, class in C ++, and other pointers containing sub-data to obtain sub-data. In other words, if we define a struct in C and declare a pointer pointing to this struct, we need to use "->" to retrieve the data in the struct using the pointer ".
For example:
Struct Data
{
Int a, B, c;
};/* Define struct */
Struct Data * p;/* define struct pointer */
Struct Data A = {1, 2, 3};/* declare variable */
Int x;/* declare a variable x */
P = & A;/* point p to */
X = p-> a;/* indicates that the data item a in the struct pointed to by p is assigned to x */
/* Because p points to A, p-> a = A. a, that is, 1 */

For the first problem, p = p-> next; this should appear in the linked list of C language. next here should be a struct pointer of the same type as p, and its definition format should be:
Struct Data
{
Int;
Struct Data * next;
};/* Define struct */
............
Main ()
{
Struct Data * p;/* declare the pointer Variable p */
......
P = p-> next;/* assign the value in next to p */
}
The linked list pointer is a difficulty in C language, but it is also the key. It is very useful to learn it. To be careful, you must first talk about variables and pointers.
What is a variable? The so-called variables should not be simply thought that the amount will become a variable. Let's use the question of our Dean: "Is the classroom changing ?" Change, because there are different people in the classroom every day, but they do not change, because the classroom is always there, and it does not become larger or smaller. This is the variable: There is a constant address and a variable storage space. Under normal circumstances, we only see the variable in the room, that is, its content, but do not pay attention to the variable address, but the C language pointer is the address of the room. We declare that variables are equivalent to building a house to store things. We can directly watch things in the house, while declaring pointers is equivalent to getting a positioner. When a pointer points to a variable, it is to use the pointer to locate the variable. Then we can use the pointer to find the variable "tracked" and get the content in it.
What about struct? The structure is equivalent to a villa composed of several houses, and several houses are bound for use together. Suppose there are many such villas distributed in a big maze, and each villa has a house. The location information of another villa is put in it. Now you have found the first villa with the positioner and obtained what you want from it (the data part of the linked list ), then, calculate the location of the next villa into your positioner (p = p-> next), and go down to the next villa ...... If you go on like this, you will know that the information of a villa on the ground is gone (p-> next = NULL), and your trip is over. This is the process of traversing a linked list. Now you can understand the meaning of p = p-> next!
Write so much. I hope you can understand.
If you want to learn c and C ++ well, you must be familiar with linked lists and pointers!

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.