Exercise 18 convexity

Source: Internet
Author: User

Don't want to work today ... But I'm going to finish today's mission.



2. (1) Solution: function $y =e^{\arctan x}$ on the definition field $ (-\infty,+\infty) $ on a continuous, and
\[
Y ' = E^{\arctan x} \frac{1}{1+x^2}, \qquad
Y ' = E^{\arctan x} \frac{1}{(1+x^2) ^2}-e^{\arctan x}
\FRAC{2X}{1+X^2}.
\]
On $ (-\infty,+\infty) $ $y "$ exists, but does not keep the same symbol. Make $y ' =0$, $x =\frac12$. The list is examined as follows:
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$x $ & $ (-\INFTY,1/2) $ & $1/2$ & $ (+\infty) $ \ \
$f ' (x) $ & $-$ & $0$
& $+$ \ \
$f (x) $ & \mbox{on top}
& & \mbox{-convex}
\\
\hline
\end{tabular}
\end{center}
So, the function in $ (-\infty,1/2]$ is convex, in $[1/2,+\infty) $ is convex, the inflection point is $ (1/2,e^{\arctan \FRAC12}) $.



(2) Solution: function $y $ on the definition field $ (-\infty,+\infty) $ on a continuous, and
\[
Y ' =
\begin{cases}
1/x-1, & X\geq 1,
\\
2x-2, & X<1,
\end{cases}
\qquad
Y ' =
\begin{cases}
-1/x^2, & X>1,
\\
\mbox{does not exist}, & X=1,
\\
2, & X<1.
\end{cases}
\]
The list is examined as follows:
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$x $ & $ (-\infty,1) $ & $1$ & $ (1, +\infty) $ \ \
$f ' (x) $ & $+$ & \mbox{Not present}
& $-$ \ \
$f (x) $ & \mbox{}
& & \mbox{on Convex}
\\
\hline
\end{tabular}
\end{center}
So, the function in $ (-\infty,1]$ is convex, in $[1,+\infty) $ is convex, and the inflection point is $ (1,-1) $.



3.

(1) Proof: the Order function
\[
\phi (x) = X^n, \quad n>1,
\]
Then the function $\phi (x) $ on $[0,+\infty) $ on a continuous and at $ (0,+\infty) $ at least two orders can be directed. When $x >0$
\[
\phi ' (x) =n (n-1) x^{n-2}>0,
\]
launched when $x \in (0,+\infty) $ function $\phi (x) $ convex, that is, by definition for any $x >0,y>0$ have
\[
\frac{\phi (x) +\phi (y)} {2}>
\phi (\frac{x+y}{2}),
\]
That
\[
\frac{x^n +y^n}{2}
> \left (
\FRAC{X+Y}{2}
\right) ^n.
\]



(2) Proof: the Order function
\[
\phi (x) = X\ln x,
\]
The function $\phi (x) $ is contiguous on $ (0,+\infty) $. When $x >0$
\[
\phi ' (x) =\frac1x>0,
\]
launched when $x \in (0,+\infty) $ function $\phi (x) $ convex, that is, by definition for any $x _1>0,x_2>0$ have
\[
\frac{\phi (x_1) +\phi (x_2)} {2}>
\phi (\frac{x_1+x_2}{2}),
\]
In particular, taking $x _1=x,x_2=1$, the
\[
\frac{x\ln x +\ln 1}{2}
>
\FRAC{X+1}{2}
\ln\left (
\FRAC{X+1}{2}
\right)
\]
That
\[
{X\ln X}
>
({x+1})
\ln\left (
\FRAC{X+1}{2}
\right).
\]



4.

(1) Function $y =\frac{(x+1) ^3}{(x-1) ^2}$ in the definition domain $ (-\infty,1) \cup (1,+\infty) $ on continuous and
\[
Y ' = \frac{(x-5) (x+1) ^2}{(x-1) ^3},
\quad
Y ' = \frac{24 (x+1)} {(x-1) ^4},
\]
Make $y ' =0$ $x =-1,x=5$, so that $y ' =0$ $x =-1$. List discussion:
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$x $ & $ (-\infty,-1) $ & $-1$ & $ ( -1,1) $ & $1$ & $ (1,5) $ & & $ (5, +\infty) $ \ \
$f ' (x) $ & $+$ & $0$
& $+$ & \mbox{Not present} & $-$ & 0 &
$+$
\\
$f ' (x) $ & $-$ & $0$ & $+$
& \mbox{Not present} & $+$ & $+$ & $+$ \
$f (x) $ & $\nearrow$
& \mbox{inflection point, non-Extreme points} & $\nearrow$
& \mbox{Breaks} & $\searrow$ & \mbox{min}
& $\nearrow$
\\
\hline
\end{tabular}
\end{center}
In summary, the function has a minimum point of $5$, while $ ( -1,0) $ for its inflection points. On the other hand, the function has no horizontal asymptotic line, there are vertical asymptote $x =1$. and
\[
\lim_{x\to \infty}
\frac{(x+1) ^3}{x (x-1) ^2}=1,
\quad \lim_{x\to \infty}
[\frac{(x+1) ^3}{(x-1) ^2}-x]=5,
\]
So the function has oblique asymptote
\[
Y=x+5.
\]






(2) Function $y =x-2\arctan x$ on the definition field $ (-\infty,+\infty) $ on continuous and
\[
Y ' = 1-\frac{2}{1+x^2},
\quad
Y ' = \frac{4x}{(1+x^2) ^2},
\]
Make $y ' =0$ $x =\pm1$, so that $y ' =0$ $x =0$. List discussion:
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$x $ & $ (-\infty,-1) $ & $-1$ & $ ( -1,0) $ & $0$ & $ (0,1) $ & & $ (1, +\infty) $ \ \
$f ' (x) $ & $+$ & $0$
& $-$ & $-$ & $-$ & 0 &
$+$
\\
$f ' (x) $ & $-$ & $-$ & $-$
& $0$ & $+$ & $+$ & $+$ \ \
$f (x) $ & $\nearrow$
& \mbox{Max} & $\searrow$
& \mbox{Inflection} & $\searrow$ & \mbox{min}
& $\nearrow$
\\
\hline
\end{tabular}
\end{center}
In summary, the function has a maximum point $-1$, and a minimum point $1$, while $ (0,0) $ for its inflection points. On the other hand, the function has no vertical asymptotic line and no horizontal asymptote. and
\[
\lim_{x\to +\infty}
\frac{x-2\arctan X}{x}=1,
\quad \lim_{x\to +\infty}
({X-2\arctan x}-x) =-\pi,
\]
And
\[
\lim_{x\to-\infty}
\frac{x-2\arctan X}{x}=1,
\quad \lim_{x\to-\infty}
({X-2\arctan x}-x) =\pi,
\]
So the function has oblique asymptote
\[
Y=x-\pi, Y=x+\pi.
\]







5. Proof: Because $f "(x_0) \neq 0$, it may be advisable to set $f" (X_0) >0$. So
\[
F ' ' (X_0)
=\lim_{x\to X_0}
\frac{f ' (x)-F ' (X_0)}{x-x_0}
=\lim_{x\to X_0}
\frac{f "(x)}{x-x_0}>0
\]
According to the limit of the local guarantee number, there is $\delta>0$, so when $0<|x-x_0|<\delta$
\[
\frac{f ' (x)}{x-x_0}>0,
\]
When $x _0<x<x_0+\delta$, $f "(x) >0$, and $x _0-\delta<x<x-0$, $f" (x) <0$, i.e. $ (x_0,f (X_0)) $ for inflection point.




Description: $x _0$ is not an extreme point at this time, why?

Exercise 18 convexity

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.